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Implicit Regularization in Deep Learning

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

≫ # of  
training examples 

# of  
learned weights 

=⇒ many possible solutions (predictors) fit training data

Variants of gradient descent (GD) usually find one of these solutions

With “natural” data solution found often generalizes well
↑

Even without explicit regularization!
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Implicit Regularization in Deep Learning

Conventional Wisdom: Implicit Regularization
Conventional Wisdom
Implicit regularization minimizes “complexity”:

GD fits training data with predictor of lowest possible complexity

GD

Natural data can be fit with low complexity, other data cannot

natural random
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Implicit Regularization in Deep Learning

Challenge: Formalizing Notion of Complexity
Goal
Mathematically formalize implicit regularization in deep learning (DL)

Challenge
We lack definitions for predictor complexity that are:

quantitative (admit generalization bounds)

test error ≤ train error + O
(
complexity

/
(# of train examples)

)
and capture essence of natural data (allow its fit with low complexity)

low complexity high complexity
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Matrix Factorization

Matrix Completion ←→ Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

observations 𝑦𝑖𝑗 𝑖,𝑗 ∈Ω
 

d × d ′ matrix completion ←→ prediction from {1, ..., d} × {1, ..., d ′} to R

value of entry (i , j) ←→ label of input (i , j)

observed entries ←→ train data

unobserved entries ←→ test data

matrix ←→ predictor
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Matrix Factorization

Matrix Factorization ←→ Linear Neural Network

Matrix factorization (MF):
Parameterize solution as product of matrices and fit observations via GD

W2 W1= *
?

?

4

5

5

?

?

4

?

?

?

4

WN * *

hidden dims do 
not constrain 

the rank

minW1,...,WN

∑
(i , j)∈Ω

(
[WNWN−1 · · ·W1]ij − yij

)2

MF ←→ matrix completion via linear NN (with no explicit regularization!)

Empirical Phenomenon (Gunasekar et al. 2017)
MF (with small init and step size) accurately recovers low rank matrices
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Matrix Factorization

Implicit Regularization = Norm Minimization?

Classic Result (Candes & Recht 2008)
If (i) unknown matrix has low rank; (ii) observations are sufficiently many,
then fitting them while minimizing nuclear norm yields accurate recovery

Conjecture (Gunasekar et al. 2017)
MF of depth 2 (with small init and step size) fits observations while
minimizing nuclear norm

Experiment

MF gives up min nuclear norm for low rank (more so with depth)!
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Matrix Factorization

Dynamical Analysis of Implicit Regularization

Denote:
We := WN · · ·W1 — end matrix of MF {σr}r — singular vals of We

Theorem
In training MF of depth N (with small init and step size): d

dtσr ∝ σ2−2/N
r

Depth speeds up (slows down) large (small) singular vals!
Experiment
Completion of low rank matrix via MF

MF depth leads to larger gaps between singular vals (lower rank)!

Further theoretical support provided in Li et al. 2021

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 12 / 29
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Matrix Factorization

Dynamical Analysis of Implicit Regularization (2)

Practical Application

“rank ... is implicitly minimized by relying on the fact that gradient
descent ... in multi-layer linear networks leads to minimum-rank ...”
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Matrix Factorization

Implicit Regularization 6= Norm Minimization

Theorem
In training MF of depth N (with small init and step size): d

dtσr ∝ σ2−2/N
r

Consider the matrix completion problem:

1

1 0

?

By corollary, if det(We) > 0 at init: fitting observations =⇒ | ? | → ∞

Experiment

There are settings where implicit
regularization of MF drives all

norms to ∞ while minimizing rank!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 14 / 29
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Experiment

There are settings where implicit
regularization of MF drives all

norms to ∞ while minimizing rank!
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CP Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction

Tensor: multi-dim array

Tensor completion: recover unknown tensor given subset of entries

observations 𝑦𝑖1,…,𝑖𝑁 𝑖1,…,𝑖𝑁 ∈Ω
 1 

1 

0 
? 

? 

? 

? 

d1× · · · × dN tensor completion ←→ prediction from [d1]× · · · × [dN ] to R

[dj ] := {1, . . . , dj}
↓

value of entry (i1, . . . , iN) ←→ label of input (i1, . . . , iN)

observed entries ←→ train data

unobserved entries ←→ test data

tensor ←→ predictor
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CP Tensor Factorization

Tensor Completion ←→ Multi-Dimensional Prediction (2)

Standard prediction tasks can be seen as tensor completion problems

Illustration — Image Recognition

C

variables
A B C

A

B
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CP Tensor Factorization
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CP Tensor Factorization

CP Tensor Factorization ←→ Non-Linear Neural Network

CP tensor factorization (TF):
Parameterize solution as sum of outer products and fit observations via GD

min{wnr }r,n `
(
{wn

r }r ,n
)

:=
∑

(i1,...,iN )∈Ω

([∑R
r=1 ⊗N

n - 1 wn
r
]
i1,...,iN − yi1,...,iN

)2

TF ←→ tensor completion via NN with multiplicative non-linearity

input conv pool sum 
(output) 

product pooling linear activation 

CP Tensor Factorization 

+  +  +
  

⊗ ⊗ ⊗ 

Non-Linear Neural Network 
 

Experiment
TF (with small init and step size) accurately recovers low rank tensors

↑
Tensor rank: min # of components in CP representation
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CP Tensor Factorization

Dynamical Analysis of Implicit Regularization

Theorem
In training TF (with small init and step size): d

dt ‖⊗
N
n - 1wn

r ‖∝‖⊗N
n - 1wn

r ‖2- 2
N

Component norms accelerate (decelerate) when large (small)!

Proof Sketch
GD with step size → 0 (gradient flow): d

dtw
n
r (t) = − ∂

∂wnr
`
(
{wn′

r ′ (t)}r ′,n′
)

For any n, n̄: ‖wn
r (t)‖2 − ‖wn̄

r (t)‖2 is constant through time

=⇒ under small init ‖wn
r (t)‖2 ≈ ‖wn̄

r (t)‖2 ≈ ‖⊗N
n′-1 wn′

r (t)‖ 2
N

Denote:
We :=

∑R
r -1⊗N

n -1wn
r — end tensor , L(·) := loss w.r.t.We , ŵn

r := wn
r

‖wnr ‖

Differentiate w.r.t. time:
d
dt ‖⊗

N
n -1 wn

r (t)‖ =
∑N

n=1

∏
n′ 6=n ‖w

n′
r (t)‖2 ·

〈
−∇L(We(t)),⊗N

n -1ŵn
r (t)

〉
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Component norms accelerate (decelerate) when large (small)!

Proof Sketch

GD with step size → 0 (gradient flow): d
dtw

n
r (t) = − ∂

∂wnr
`
(
{wn′

r ′ (t)}r ′,n′
)

For any n, n̄: ‖wn
r (t)‖2 − ‖wn̄

r (t)‖2 is constant through time

=⇒ under small init ‖wn
r (t)‖2 ≈ ‖wn̄

r (t)‖2 ≈ ‖⊗N
n′-1 wn′

r (t)‖ 2
N

Denote:
We :=

∑R
r -1⊗N

n -1wn
r — end tensor , L(·) := loss w.r.t.We , ŵn

r := wn
r

‖wnr ‖

Differentiate w.r.t. time:
d
dt ‖⊗

N
n -1 wn

r (t)‖ =
∑N

n=1

∏
n′ 6=n ‖w

n′
r (t)‖2 ·

〈
−∇L(We(t)),⊗N

n -1ŵn
r (t)

〉
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r := wn
r

‖wnr ‖

Differentiate w.r.t. time:
d
dt ‖⊗

N
n -1 wn

r (t)‖ =
∑N

n=1

∏
n′ 6=n ‖w

n′
r (t)‖2 ·

〈
−∇L(We(t)),⊗N

n -1ŵn
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r := wn
r

‖wnr ‖

Differentiate w.r.t. time:
d
dt ‖⊗

N
n -1 wn

r (t)‖ =
∑N

n=1

∏
n′ 6=n ‖w

n′
r (t)‖2 ·

〈
−∇L(We(t)),⊗N

n -1ŵn
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CP Tensor Factorization

Dynamical Analysis of Implicit Regularization (2)
Experiment
Completion of low rank tensor via TF

Training TF leads to gaps
between component norms

(low tensor rank)!

Proposition
If tensor completion has rank 1 solution, then under technical conditions
TF will reach it

Proof Sketch
Denote: α > 0 — init scale
d
dt ‖⊗

N
n - 1wn

r ‖∝‖⊗N
n - 1wn

r ‖2-
2
N =⇒ one component O(1) while others O(αN)

α→ 0 =⇒ end tensor We follows rank 1 trajectory until convergence
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Tensor Rank as Measure of Complexity

Challenge: Formalizing Notion of Complexity
Goal
Mathematically formalize implicit regularization in deep learning (DL)

Challenge
We lack definitions for predictor complexity that are:

quantitative (admit generalization bounds)

test error ≤ train error + O
(
complexity

/
(# of train examples)

)
and capture essence of natural data (allow its fit with low complexity)

low complexity high complexity
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Tensor Rank as Measure of Complexity

Tensor Rank Captures Non-Linear Neural Network
We saw:

Tensor completion ←→ multi-dim prediction

C 

1 
? 1 

0 

A B C 

A 

B 

CP tensor factorization ←→ non-linear NN

+  +  +
  

⊗ ⊗ ⊗ 

Implicit regularization favors tensors (predictors) of low rank

Question
Can tensor rank serve as measure of complexity for predictors?
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Tensor Rank as Measure of Complexity

Experiment: Fitting Data with Low Tensor Rank

Experiment
Fitting data with predictors of low tensor rank

Datasets:
MNIST and Fashion-MNIST (one-vs-all)
Each compared against:
(i) random images (same labels) (ii) random labels (same images)

Original data fit far more accurately than random (leading to low test err)!

Tensor rank may shed light on both implicit regularization of NNs
and properties of real-world data translating it to generalization
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Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Recap
Understanding implicit regularization in DL:

Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Equivalent to two-dim prediction via linear NN

Conjecture: implicit regularization minimizes norm

Dynamical analysis: implicit regularization minimizes rank (not norm)

CP tensor factorization:

Equivalent to multi-dim prediction via non-linear NN

Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 26 / 29



Conclusion

Ongoing Work: Adding Depth via Hierarchy

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 27 / 29



Conclusion

Ongoing Work: Adding Depth via Hierarchy

input conv pool output 

product pooling linear activation 

CP Tensor Factorization Shallow Non-Linear Neural Network 

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 27 / 29



Conclusion

Ongoing Work: Adding Depth via Hierarchy

input conv pool output 

product pooling linear activation 

CP Tensor Factorization Shallow Non-Linear Neural Network 

Implicit regularization = minimization of tensor rank  

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 27 / 29



Conclusion

Ongoing Work: Adding Depth via Hierarchy

input conv pool output 

product pooling linear activation 

CP Tensor Factorization Shallow Non-Linear Neural Network 

Implicit regularization = minimization of tensor rank  

Oblivious to input ordering 

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 27 / 29



Conclusion

Ongoing Work: Adding Depth via Hierarchy

Hierarchical Tensor Factorization 

input conv pool output 

product pooling linear activation 

CP Tensor Factorization Shallow Non-Linear Neural Network 

Deep Non-Linear Neural Network 
 

input conv pool output 

product pooling linear activation 

conv pool 

Implicit regularization = minimization of tensor rank  

Oblivious to input ordering 

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 27 / 29



Conclusion

Ongoing Work: Adding Depth via Hierarchy

Hierarchical Tensor Factorization 

input conv pool output 

product pooling linear activation 

CP Tensor Factorization Shallow Non-Linear Neural Network 

Deep Non-Linear Neural Network 
 

input conv pool output 

product pooling linear activation 

conv pool 

Implicit regularization = minimization of tensor rank  

Oblivious to input ordering 

Implicit regularization = minimization of hierarchical tensor rank 
? 

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 27 / 29



Conclusion

Ongoing Work: Adding Depth via Hierarchy

Hierarchical Tensor Factorization 

input conv pool output 

product pooling linear activation 

CP Tensor Factorization Shallow Non-Linear Neural Network 

Deep Non-Linear Neural Network 
 

input conv pool output 

product pooling linear activation 

conv pool 

Implicit regularization = minimization of tensor rank  

Oblivious to input ordering 

Implicit regularization = minimization of hierarchical tensor rank 

Accounts for input ordering 

? 

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 27 / 29



Outline

1 Implicit Regularization in Deep Learning

2 Matrix Factorization

3 CP Tensor Factorization

4 Tensor Rank as Measure of Complexity

5 Conclusion

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 28 / 29



Thank You

Work supported by: Amnon and Anat Shashua, Len Blavatnik and the Blavatnik
Family Foundation, Yandex Initiative in Machine Learning, Google Research Gift

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization IPAM Workshop, Mar’21 29 / 29


	Implicit Regularization in Deep Learning
	Matrix Factorization
	CP Tensor Factorization
	Tensor Rank as Measure of Complexity
	Conclusion

