Analyzing Optimization and Generalization in Deep Learning via Trajectories of Gradient Descent

Nadav Cohen

Institute for Advanced Study \longrightarrow Tel Aviv University

Frontiers of Deep Learning Workshop

Simons Institute for the Theory of Computing

15 July 2019

Outline

Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

3 Conclusion

Optimization

Fitting training data by minimizing an objective (loss) function

Generalization

Controlling gap between train and test errors, e.g. by adding regularization term/constraint to objective

Classical Machine Learning

Theme: make sure objective is convex!

Classical Machine Learning

Theme: make sure objective is convex!

Optimization

- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Classical Machine Learning

Theme: make sure objective is convex!

Optimization

- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Generalization

Na

Bias-variance trade-off:

	regularization	train/test gap	train err	_
	more	\searrow	\nearrow	
	less	\nearrow	\searrow	-
ladav Cohen (IAS $ ightarrow$	· TAU) Anal	rzing DL via Trajectories of GD	DL Workshop	p, Simons, Jul'19

5 / 36

Classical Machine Learning

Optimization

- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Generalization

Na

Bias-variance trade-off:

	regularization	train/test gap	train err	
	more	\searrow	\nearrow	
	less	\nearrow	\searrow	
adav Cohen (IAS $ ightarrow$	• TAU) Analyzi	ng DL via Trajectories of GD	DL Workshop	Simon

ns, Jul'19

5 / 36

Deep Learning (DL)

Theme: allow objective to be non-convex

Theme: allow objective to be non-convex

Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Deep Learning (DL)

Theme: allow objective to be non-convex

Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Generalization

- Some global minima generalize well, others don't
- With typical data, solution found by GD often generalizes well
- No bias-variance trade-off regularization implicitly induced by GD

Theme: allow objective to be non-convex

Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Generalization

- Some global minima generalize well, others don't
- With typical data, solution found by GD often generalizes well
- No bias-variance trade-off regularization implicitly induced by GD

6 / 36

Analysis via Trajectories of Gradient Descent

Perspective

• Language of classical learning theory may be insufficient for DL

Analysis via Trajectories of Gradient Descent

Perspective

- Language of classical learning theory may be insufficient for DL
- Need to carefully analyze course of learning, i.e. trajectories of GD!

Analysis via Trajectories of Gradient Descent

Perspective

- Language of classical learning theory may be insufficient for DL
- Need to carefully analyze course of learning, i.e. trajectories of GD!

Case will be made via deep linear neural networks

Outline

Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

3 Conclusion

Sources

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

Arora + C + Hazan (alphabetical order) International Conference on Machine Learning (ICML) 2018

A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks

Arora + C + Golowich + Hu (alphabetical order) International Conference on Learning Representations (ICLR) 2019

Implicit Regularization in Deep Matrix Factorization

Arora + C + Hu + Luo (alphabetical order) Preprint 2019

Collaborators

Sanjeev Arora

Elad Hazan

Yuping Luo

Wei Hu

Google

Nadav Cohen (IAS \rightarrow TAU)

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

LNN realize only linear mappings, but are highly non-trivial in terms of optimization and generalization

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

LNN realize only linear mappings, but are highly non-trivial in terms of optimization and generalization

Studied extensively as surrogate for non-linear neural networks:

- Saxe et al. 2014
- Kawaguchi 2016
- Advani & Saxe 2017
- Hardt & Ma 2017

- Laurent & Brecht 2018
- Gunasekar et al. 2018
- Ji & Telgarsky 2019
- Lampinen & Ganguli 2019

Outline

D Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size \rightarrow 0):

$$rac{d}{dt} oldsymbol lpha(t) = -
abla f(oldsymbol lpha(t)) \ , \ t \in \mathbb{R}_{>0}$$

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size \rightarrow 0):

$$rac{d}{dt} oldsymbol lpha(t) = -
abla f(oldsymbol lpha(t)) \ , \ t \in \mathbb{R}_{>0}$$

Admits use of theoretical tools from differential geometry/equations

Nadav Cohen (IAS \rightarrow TAU)

Balanced Trajectories

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

Balanced Trajectories

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

Loss $\ell(\cdot)$ for linear model induces **overparameterized objective** for LNN: $\phi(W_1, \ldots, W_N) := \ell(W_N \cdots W_2 W_1)$

Trajectory Analysis

Balanced Trajectories

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

Loss $\ell(\cdot)$ for linear model induces **overparameterized objective** for LNN: $\phi(W_1, \ldots, W_N) := \ell(W_N \cdots W_2 W_1)$

Definition

Weights $W_1 \dots W_N$ are **balanced** if $W_{j+1}^\top W_{j+1} = W_j W_j^\top$, $\forall j$.

Trajectory Analysis

Balanced Trajectories

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

Loss $\ell(\cdot)$ for linear model induces **overparameterized objective** for LNN: $\phi(W_1, \ldots, W_N) := \ell(W_N \cdots W_2 W_1)$

Definition

Weights $W_1 \dots W_N$ are **balanced** if $W_{j+1}^\top W_{j+1} = W_j W_j^\top$, $\forall j$. \uparrow Holds approximately under ≈ 0 init, exactly under residual (I_d) init

Balanced Trajectories

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

Loss $\ell(\cdot)$ for linear model induces **overparameterized objective** for LNN: $\phi(W_1, \ldots, W_N) := \ell(W_N \cdots W_2 W_1)$

Definition

Weights $W_1 \dots W_N$ are **balanced** if $W_{j+1}^\top W_{j+1} = W_j W_j^\top$, $\forall j$. \uparrow Holds approximately under ≈ 0 init, exactly under residual (I_d) init

Claim

Trajectories of GF over LNN preserve balancedness: if $W_1 \dots W_N$ are balanced at init, they remain that way throughout GF optimization

Nadav Cohen (IAS \rightarrow TAU) Analyzing DL via Trajectories of GD DL Worksho

Question

How does end-to-end matrix $W_{1:N} := W_N \cdots W_1$ move on GF trajectories?

Linear Neural Network

Equivalent Linear Model

?

Gradient flow over $\phi(W_1,...,W_N)$

Question

How does end-to-end matrix $W_{1:N} := W_N \cdots W_1$ move on GF trajectories?

Linear Neural Network

Equivalent Linear Model

gradient flow over $\ell(W_{1:N})$

Theorem

If $W_1 \dots W_N$ are balanced at init, $W_{1:N}$ follows end-to-end dynamics:

 $\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]$

where $P_{W_{1:N}(t)}$ is a preconditioner (PSD matrix) that "reinforces" $W_{1:N}(t)$

Question

How does end-to-end matrix $W_{1:N} := W_N \cdots W_1$ move on GF trajectories?

Linear Neural Network

Equivalent Linear Model

gradient flow over $\ell(W_{1:N})$

Theorem

If $W_1 \dots W_N$ are balanced at init, $W_{1:N}$ follows end-to-end dynamics:

$$rac{d}{dt}$$
 vec $[W_{1:N}(t)] = -P_{W_{1:N}(t)} \cdot$ vec $[
abla \ell(W_{1:N}(t))]$

where $P_{W_{1:N}(t)}$ is a preconditioner (PSD matrix) that "reinforces" $W_{1:N}(t)$

$$P_{W_{1:N}(t)} \cdot \operatorname{vec} \left[\nabla \ell \left(W_{1:N}(t) \right) \right] = \\\operatorname{vec} \left[\sum_{j=1}^{N} \left[W_{1:N}(t) W_{1:N}(t)^{\top} \right]^{\frac{N-j}{N}} \cdot \nabla \ell \left(W_{1:N}(t) \right) \cdot \left[W_{1:N}(t)^{\top} W_{1:N}(t) \right]^{\frac{j-1}{N}} \right]$$

Nadav Cohen (IAS \rightarrow TAU)

Question

How does end-to-end matrix $W_{1:N} := W_N \cdots W_1$ move on GF trajectories?

Linear Neural Network

Equivalent Linear Model

gradient flow over $\ell(W_{1:N})$

Theorem

If $W_1 \dots W_N$ are balanced at init, $W_{1:N}$ follows end-to-end dynamics:

$$rac{d}{dt}$$
 vec $[W_{1:N}(t)] = -P_{W_{1:N}(t)} \cdot$ vec $[
abla \ell(W_{1:N}(t))]$

where $P_{W_{1:N}(t)}$ is a preconditioner (PSD matrix) that "reinforces" $W_{1:N}(t)$

Adding (redundant) linear layers to classic linear model induces preconditioner promoting movement in directions already taken!

Nadav Cohen (IAS \rightarrow TAU)

Outline

DOptimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

• Trajectory Analysis

Optimization

Generalization

3 Conclusion

Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

<u>Result</u> (cf. Ge et al. 2015; Lee et al. 2016)

If: (1) there are no poor local minima; and (2) all saddle points are strict, then GD converges to global min
Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

<u>Result</u> (cf. Ge et al. 2015; Lee et al. 2016)

If: (1) there are no poor local minima; and (2) all saddle points are strict, then GD converges to global min

Motivated by this, many 1 studied the validity of (1) and/or (2)

¹ e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018

17 / 36

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

<u>Result</u> (cf. Ge et al. 2015; Lee et al. 2016)

If: (1) there are no poor local minima; and (2) all saddle points are strict, then GD converges to global min

Motivated by this, many 1 studied the validity of (1) and/or (2)

Limitation: deep (\geq 3 layer) models violate (2) (consider all weights = 0)!

¹ e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018 Naday Cohen (IAS → TAU) Analyzing DL via Trajectories of GD DL Workshop, Simons, Jul'19 17 / 36

Applying Our Trajectory Analysis

Optimization

Applying Our Trajectory Analysis

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$\frac{d}{dt} \operatorname{vec} \left[W_{1:N}(t) \right] = -P_{W_{1:N}(t)} \cdot \operatorname{vec} \left[\nabla \ell (W_{1:N}(t)) \right]$$

Case Study: Linear Neural Networks

Optimization

Applying Our Trajectory Analysis

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$\frac{d}{dt} \operatorname{vec} \left[W_{1:N}(t) \right] = -P_{W_{1:N}(t)} \cdot \operatorname{vec} \left[\nabla \ell (W_{1:N}(t)) \right]$$

 $P_{W_{1:N}(t)} \succ 0$ when $W_{1:N}(t)$ has full rank

Applying Our Trajectory Analysis

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$\frac{d}{dt} \operatorname{vec} \left[W_{1:N}(t) \right] = - P_{W_{1:N}(t)} \cdot \operatorname{vec} \left[\nabla \ell(W_{1:N}(t)) \right]$$

 $P_{W_{1:N}(t)} \succ 0$ when $W_{1:N}(t)$ has full rank \implies loss decreases until: (1) $\nabla \ell(W_{1 \cdot N}(t)) = 0$ or (2) $W_{1 \cdot N}(t)$ is singular

Optimization

Applying Our Trajectory Analysis

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$\frac{d}{dt} \operatorname{vec} \left[W_{1:N}(t) \right] = -P_{W_{1:N}(t)} \cdot \operatorname{vec} \left[\nabla \ell(W_{1:N}(t)) \right]$$

$$P_{W_{1:N}(t)} \succ 0$$
 when $W_{1:N}(t)$ has full rank \implies loss decreases until:
(1) $\nabla \ell(W_{1:N}(t)) = 0$ or (2) $W_{1:N}(t)$ is singular

 $\ell(\cdot)$ is typically convex \implies (1) means global min was reached

Applying Our Trajectory Analysis

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$\frac{d}{dt} \text{vec} \left[W_{1:N}(t) \right] = -P_{W_{1:N}(t)} \cdot \text{vec} \left[\nabla \ell(W_{1:N}(t)) \right]$$

$$P_{W_{1:N}(t)} \succ 0$$
 when $W_{1:N}(t)$ has full rank \implies loss decreases until:
(1) $\nabla \ell(W_{1:N}(t)) = 0$ or (2) $W_{1:N}(t)$ is singular

 $\ell(\cdot)$ is typically convex \implies (1) means global min was reached

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

• $\ell(W_{1:N}) < \ell(W)$ for any singular W

2 $W_1 \dots W_N$ are balanced

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

- $\ell(W_{1:N}) < \ell(W)$ for any singular W
- **2** $W_1 \dots W_N$ are balanced

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

- $\ell(W_{1:N}) < \ell(W)$, $\forall W \ s.t. \ \sigma_{min}(W) = 0$
- **2** $W_1 \ldots W_N$ are balanced

Optimization

From Gradient Flow to Gradient Descent

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

•
$$\ell(W_{1:N}) < \ell(W)$$
, $\forall W \ s.t. \ \sigma_{min}(W) = 0$

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

- $\ell(W_{1:N}) < \ell(W)$, $\forall W \ s.t. \ \sigma_{min}(W) = 0$
- **2** $||W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}||_{F} = 0$, $\forall j$

Theorem

Assume $\ell(\cdot)$ is convex and LNN is init such that:

- **2** $\|W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}\|_{F} = 0$, $\forall j$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- **2** $\|W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}\|_{F} = 0$, $\forall j$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- **2** $\|W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}\|_{F} = 0$, $\forall j$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- **2** $||W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}||_{F} \leq \mathcal{O}(c^{2})$, $\forall j$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- **2** $||W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}||_{F} \leq \mathcal{O}(c^{2})$, $\forall j$

Then, GD with step size $\eta \leq O(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- **2** $||W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}||_{F} \leq \mathcal{O}(c^{2})$, $\forall j$

Then, GD with step size $\eta \leq O(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- **2** $||W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}||_{F} \leq \mathcal{O}(c^{2})$, $\forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $< e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

Are necessary (violating any of them can lead to divergence)

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- $\ell(W_{1:N}) < \ell(W)$, $\forall W \ s.t. \ \sigma_{min}(W) \leq c$
- **2** $\|W_{j+1}^{\top}W_{j+1} W_{j}W_{j}^{\top}\|_{F} \leq \mathcal{O}(c^{2})$, $\forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration $t) \leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

- Are necessary (violating any of them can lead to divergence)
- For out dim 1, hold with const prob under random "balanced" init

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- **2** $||W_{i+1}^{\top}W_{i+1} W_{i}W_{i}^{\top}||_{F} \leq \mathcal{O}(c^{2})$, $\forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $< e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

- Are necessary (violating any of them can lead to divergence)
- For out dim 1, hold with const prob under random "balanced" init

Guarantee of efficient (linear rate) convergence to global min! Most general guarantee to date for GD efficiently training deep net.

Nadav Cohen (IAS \rightarrow TAU) Analyzing DL via Trajectories of GD DL Workshop, Simons, Jul'19 19 / 36

Effect of Depth on Optimization

Effect of Depth on Optimization

Viewpoint of classical learning theory:

• Convex optimization is easier than non-convex

Effect of Depth on Optimization

Viewpoint of classical learning theory:

• Convex optimization is easier than non-convex

• Hence depth complicates optimization

Effect of Depth on Optimization

Viewpoint of classical learning theory:

• Convex optimization is easier than non-convex

• Hence depth complicates optimization

Our trajectory analysis reveals: not always true...

Nadav Cohen (IAS \rightarrow TAU)

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Discrete version of end-to-end dynamics for LNN:

 $\textit{vec}[W_{1:N}(t+1)] \leftarrow \textit{vec}[W_{1:N}(t)] - \eta \cdot \textit{P}_{W_{1:N}(t)} \cdot \textit{vec}[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss (i.e. $\ell(W) = \frac{1}{m} \sum_{i=1}^m ||W\mathbf{x}_i - \mathbf{y}_i||_p^p$) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss (i.e. $\ell(W) = \frac{1}{m} \sum_{i=1}^m ||W\mathbf{x}_i - \mathbf{y}_i||_p^p$) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss (i.e. $\ell(W) = \frac{1}{m} \sum_{i=1}^m ||W\mathbf{x}_i - \mathbf{y}_i||_p^p$) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from UCI ML Repository ; ℓ_4 loss

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss (i.e. $\ell(W) = \frac{1}{m} \sum_{i=1}^m ||W\mathbf{x}_i - \mathbf{y}_i||_p^p$) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from UCI ML Repository ; ℓ_4 loss

Nadav Cohen (IAS \rightarrow TAU) Analyzing DL via Trajectories of GD DL Workshop, Simons, Jul'19 21 / 36

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss (i.e. $\ell(W) = \frac{1}{m} \sum_{i=1}^m ||W\mathbf{x}_i - \mathbf{y}_i||_p^p$) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from UCI ML Repository ; ℓ_4 loss

Depth can speed-up GD, even without any gain in expressiveness, and despite introducing non-convexity!

Outline

DOptimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

Generalization

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Generalization

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

	Animums		NOW YOU SEE ME	CHE WOLF
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Can be viewed as classification (regression) problem:

observed entries	\longleftrightarrow	training data	
unobserved entries	\longleftrightarrow	test data	
Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

Can be viewed as classification (regression) problem:

observed entries	\longleftrightarrow	training data
unobserved entries	\longleftrightarrow	test data

Standard Assumption

Matrix to recover (ground truth) is low-rank

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

	Aremuens	THEPRESTIGE	NOW YOU SEE ME	CHE WOLF
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Can be viewed as classification (regression) problem:

observed entries	\longleftrightarrow	training data
unobserved entries	\longleftrightarrow	test data

Standard Assumption

Matrix to recover (ground truth) is low-rank

Classical Result (cf. Candes & Recht 2008)

Nuclear norm minimization (convex program) perfectly recovers ("almost any") low-rank matrix if observations are sufficiently many

Nadav Cohen (IAS \rightarrow TAU)

23 / 36

Generalization

Two-Layer Network \longleftrightarrow Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

Generalization

Two-Layer Network \longleftrightarrow Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

• Known as matrix factorization (MF)

Two-Layer Network \longleftrightarrow Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

Known as matrix factorization (MF)

Empirical Phenomenon

GD (with step size $\ll 1$ and init ≈ 0) over MF recovers low-rank matrices, even when shared dim of W_1 , W_2 doesn't constrain rank!

Two-Layer Network $\leftrightarrow \rightarrow$ Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

Known as matrix factorization (MF)

Empirical Phenomenon

GD (with step size $\ll 1$ and init ≈ 0) over MF recovers low-rank matrices, even when shared dim of W_1 , W_2 doesn't constrain rank!

Conjecture (Gunasekar et al. 2017)

GD (with step size $\ll 1$ and init ≈ 0) over MF converges to solution with min nuclear norm (among those fitting observations)

Two-Layer Network \longleftrightarrow Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

• Known as matrix factorization (MF)

Empirical Phenomenon

GD (with step size $\ll 1$ and init ≈ 0) over MF recovers low-rank matrices, even when shared dim of W_1 , W_2 doesn't constrain rank!

Conjecture (Gunasekar et al. 2017)

GD (with step size $\ll 1$ and init ≈ 0) over MF converges to solution with min nuclear norm (among those fitting observations)

Gunasekar et al. 2017 proved conjecture for a certain restricted setting

Nadav Cohen (IAS \rightarrow TAU)

24 / 36

Generalization

N-Layer Network \longleftrightarrow "Deep Matrix Factorization"

Matrix completion via N-layer LNN:

• Parameterize ground truth as $W_N \cdots W_2 W_1$

Generalization

N-Layer Network \longleftrightarrow "Deep Matrix Factorization"

Matrix completion via N-layer LNN:

• Parameterize ground truth as $W_N \cdots W_2 W_1$

• We refer to this as deep matrix factorization (DMF)

Generalization

N-Layer Network \longleftrightarrow "Deep Matrix Factorization"

Matrix completion via N-layer LNN:

• Parameterize ground truth as $W_N \cdots W_2 W_1$

• We refer to this as deep matrix factorization (DMF)

Experiment

Completion of low-rank matrix via GD over DMF

Generalization

N-Layer Network \longleftrightarrow "Deep Matrix Factorization"

Matrix completion via N-layer LNN:

• Parameterize ground truth as $W_N \cdots W_2 W_1$

• We refer to this as deep matrix factorization (DMF)

Experiment

Completion of low-rank matrix via GD over DMF

Depth enhanced implicit regularization towards low rank!

Nadav Cohen (IAS \rightarrow TAU)

25 / 36

Can the Implicit Regularization Be Captured by Norms?

Generalization

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

 \longleftrightarrow

implicit regularization with depth 2 LNN (MF) minimizing nuclear norm (surrogate for rank)

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

 \longleftrightarrow

implicit regularization with depth 2 LNN (MF) minimizing nuclear norm (surrogate for rank)

In light of our experiments, natural to hypothesize:

implicit regularization with deeper LNN (DMF) minimizing other norm or quasi-norm closer to rank

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

 \longleftrightarrow

implicit regularization with depth 2 LNN (MF) \longleftrightarrow

minimizing nuclear norm (surrogate for rank)

In light of our experiments, natural to hypothesize:

implicit regularization with deeper LNN (DMF) minimizing other norm or quasi-norm closer to rank

Example

Schatten-*p* quasi-norm to the power of *p*:

•
$$\|W\|_{S_p}^p := \sum_r \sigma_r^p(W)$$
 where $\sigma_r(W)$ are singular vals of W

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

 $\begin{array}{ll} \textit{implicit regularization} \\ \textit{with depth 2 LNN (MF)} \end{array} \longleftrightarrow$

minimizing nuclear norm (surrogate for rank)

In light of our experiments, natural to hypothesize:

implicit regularization with deeper LNN (DMF) \longleftrightarrow

minimizing other norm or quasi-norm closer to rank

Example

Schatten-*p* quasi-norm to the power of *p*:

- $||W||_{S_p}^p := \sum_r \sigma_r^p(W)$ where $\sigma_r(W)$ are singular vals of W
- p = 1: nuclear norm, corresponds to depth 2 by Gunasekar et al. 2017

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

 $\begin{array}{ll} \textit{implicit regularization} \\ \textit{with depth 2 LNN (MF)} \end{array} \longleftrightarrow$

minimizing nuclear norm (surrogate for rank)

In light of our experiments, natural to hypothesize:

 $\begin{array}{ll} \textit{implicit regularization} \\ \textit{with deeper LNN (DMF)} \end{array} \longleftrightarrow$

minimizing other norm or quasi-norm closer to rank

Example

Schatten-*p* quasi-norm to the power of *p*:

- $||W||_{S_p}^p := \sum_r \sigma_r^p(W)$ where $\sigma_r(W)$ are singular vals of W
- p = 1: nuclear norm, corresponds to depth 2 by Gunasekar et al. 2017
- 0 < p < 1: closer to rank, may correspond to higher depths

Theorem

In the restricted setting where Gunasekar et al. 2017 proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth ≥ 2

Theorem

In the restricted setting where Gunasekar et al. 2017 proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth ≥ 2

Proposition

There exist instances of this setting where nuclear norm minimization contradicts Schatten-p quasi-norm minimization (even locally) $\forall p \in (0, 1)$

Theorem

In the restricted setting where Gunasekar et al. 2017 proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth ≥ 2

Proposition

There exist instances of this setting where nuclear norm minimization contradicts Schatten-p quasi-norm minimization (even locally) $\forall p \in (0, 1)$

This implies:

implicit regularization with any depth \neq Schatten quasi-norm minimization

Theorem

In the restricted setting where Gunasekar et al. 2017 proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth ≥ 2

Proposition

There exist instances of this setting where nuclear norm minimization contradicts Schatten-p quasi-norm minimization (even locally) $\forall p \in (0, 1)$

This implies:

implicit regularization with any depth \neq Schatten quasi-norm minimization

Instead, adopting lens of Gunasekar et al. 2017 leads to conjecturing: implicit regularization with any depth = nuclear norm minimization

27 / 36

Theorem

In the restricted setting where Gunasekar et al. 2017 proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth > 2

Proposition

There exist instances of this setting where nuclear norm minimization contradicts Schatten-p quasi-norm minimization (even locally) $\forall p \in (0, 1)$

This implies:

implicit regularization with any depth \neq Schatten quasi-norm minimization

Instead, adopting lens of Gunasekar et al. 2017 leads to conjecturing: implicit regularization with any depth = nuclear norm minimization

But our experiments show depth changes implicit regularization!

Generalization

Experiments Testing Nuclear Norm Conjecture

Setup:

- Completion of 100×100 rank 5 matrix
- Observed entries chosen uniformly at random

Setup:

- \bullet Completion of 100 \times 100 rank 5 matrix
- Observed entries chosen uniformly at random

Many (5K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min			
depth-2 LNN			
depth-3 LNN			
depth-4 LNN			

Setup:

- \bullet Completion of 100 \times 100 rank 5 matrix
- Observed entries chosen uniformly at random

Many (5K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min	8 e -07	221	5
depth-2 LNN			
depth-3 LNN			
depth-4 LNN			

• Nuclear norm minimization recovers ground truth

Setup:

- \bullet Completion of 100 \times 100 rank 5 matrix
- Observed entries chosen uniformly at random

Many (5K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min	8 e -07	221	5
depth-2 LNN	5 e -06	221	5
depth-3 LNN	4 e -06	221	5
depth-4 LNN	4 e -06	221	5

- Nuclear norm minimization recovers ground truth
- LNN do so too

Setup:

- Completion of 100×100 rank 5 matrix
- Observed entries chosen uniformly at random

Many (5K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min	8 e -07	221	5
depth-2 LNN	5 e -06	221	5
depth-3 LNN	4 e -06	221	5
depth-4 LNN	4 e -06	221	5

- Nuclear norm minimization recovers ground truth
- LNN do so too
- Correspondence, but can't distinguish nuclear norm minimization from any other bias leading to low rank

Nadav Cohen (IAS \rightarrow TAU)

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min			
depth-2 LNN			
depth-3 LNN			
depth-4 LNN			

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min	1 e -01	210	9
depth-2 LNN			
depth-3 LNN			
depth-4 LNN			

• Nuclear norm minimization does not recover ground truth

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min	1 e -01	210	9
depth-2 LNN	2 e -02	217	7
depth-3 LNN	3 e -05	221	5
depth-4 LNN	2 e -05	221	5

- Nuclear norm minimization does not recover ground truth
- LNN focus on lowering effective rank at expense of nuclear norm

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min	1 e -01	210	9
depth-2 LNN	2 e -02	217	7
depth-3 LNN	3 e -05	221	5
depth-4 LNN	2 e -05	221	5

- Nuclear norm minimization does not recover ground truth
- LNN focus on lowering effective rank at expense of nuclear norm
- Discrepancy!

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min	1 e -01	210	9
depth-2 LNN	2 e -02	217	7
depth-3 LNN	3 e -05	221	5
depth-4 LNN	2 e -05	221	5

- Nuclear norm minimization does not recover ground truth
- LNN focus on lowering effective rank at expense of nuclear norm

• Discrepancy!

LNN implicitly minimize nuclear norm sometimes but not always!

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

	reconst err	nuclear norm	effective rank
nuclear norm min	1 e -01	210	9
depth-2 LNN	2 e -02	217	7
depth-3 LNN	3 e -05	221	5
depth-4 LNN	2 e -05	221	5

- Nuclear norm minimization does not recover ground truth
- LNN focus on lowering effective rank at expense of nuclear norm
- Discrepancy!

LNN implicitly minimize nuclear norm sometimes but not always!

Hypothesis

Single norm (or quasi-norm) not enough to capture implicit regularization, detailed account for trajectories is needed

Nadav Cohen (IAS \rightarrow TAU)

Trajectory Analysis — Dynamics of Singular Values
Case Study: Linear Neural Networks Generalization

Trajectory Analysis \longrightarrow Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\frac{d}{dt} \operatorname{vec} \left[W_{1:N}(t) \right] = -P_{W_{1:N}(t)} \cdot \operatorname{vec} \left[\nabla \ell(W_{1:N}(t)) \right]$$

Trajectory Analysis \longrightarrow Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\frac{d}{dt}\mathsf{vec}\left[W_{1:N}(t)\right] = -\mathsf{P}_{W_{1:N}(t)}\cdot\mathsf{vec}\left[\nabla\ell(W_{1:N}(t))\right]$$

Denote:

- $\{\sigma_r(t)\}_r$ singular vals of $W_{1:N}(t)$
- $\{\mathbf{u}_r(t)\}_r/\{\mathbf{v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Case Study: Linear Neural Networks Ge

Generalization

Trajectory Analysis —> Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\frac{d}{dt} \operatorname{vec} \left[W_{1:N}(t) \right] = -P_{W_{1:N}(t)} \cdot \operatorname{vec} \left[\nabla \ell (W_{1:N}(t)) \right]$$

Denote:

- $\{\sigma_r(t)\}_r$ singular vals of $W_{1:N}(t)$
- $\{\mathbf{u}_r(t)\}_r/\{\mathbf{v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Theorem

$$\frac{d}{dt}\sigma_r(t) = -N \cdot \sigma_r^{2-\frac{2}{N}}(t) \cdot \left\langle \nabla \ell(W_{1:N}(t)), \mathbf{u}_r(t) \mathbf{v}_r^{\top}(t) \right\rangle$$

Trajectory Analysis \longrightarrow Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\frac{d}{dt} \operatorname{vec} \left[W_{1:N}(t) \right] = -P_{W_{1:N}(t)} \cdot \operatorname{vec} \left[\nabla \ell (W_{1:N}(t)) \right]$$

Denote:

- $\{\sigma_r(t)\}_r$ singular vals of $W_{1:N}(t)$
- $\{\mathbf{u}_r(t)\}_r/\{\mathbf{v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Theorem

$$\frac{d}{dt}\sigma_r(t) = -N \cdot \sigma_r^{2-\frac{2}{N}}(t) \cdot \left\langle \nabla \ell(W_{1:N}(t)), \mathbf{u}_r(t) \mathbf{v}_r^{\top}(t) \right\rangle$$

Interpretation

• Given $W_{1:N}(t)$, depth affects evolution only via factors $N \cdot \sigma_r^{2-\frac{2}{N}}(t)$

Trajectory Analysis \longrightarrow Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\frac{d}{dt} \mathsf{vec}\left[\mathcal{W}_{1:N}(t) \right] = - \mathcal{P}_{\mathcal{W}_{1:N}(t)} \cdot \mathsf{vec}\left[\nabla \ell \big(\mathcal{W}_{1:N}(t) \big) \right]$$

Denote:

- $\{\sigma_r(t)\}_r$ singular vals of $W_{1:N}(t)$
- $\{\mathbf{u}_r(t)\}_r/\{\mathbf{v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Theorem

$$\frac{d}{dt}\sigma_r(t) = -N \cdot \sigma_r^{2-\frac{2}{N}}(t) \cdot \left\langle \nabla \ell(W_{1:N}(t)), \mathbf{u}_r(t) \mathbf{v}_r^{\top}(t) \right\rangle$$

Interpretation

- Given $W_{1:N}(t)$, depth affects evolution only via factors $N \cdot \sigma_r^{2-\frac{2}{N}}(t)$
- N = 1 (classic linear model): factors reduce to 1

Generalization

Trajectory Analysis \longrightarrow Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\frac{d}{dt} \mathsf{vec}\left[\mathcal{W}_{1:N}(t) \right] = - \mathcal{P}_{\mathcal{W}_{1:N}(t)} \cdot \mathsf{vec}\left[\nabla \ell \big(\mathcal{W}_{1:N}(t) \big) \right]$$

Denote:

- $\{\sigma_r(t)\}_r$ singular vals of $W_{1:N}(t)$
- $\{\mathbf{u}_r(t)\}_r/\{\mathbf{v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Theorem

$$\frac{d}{dt}\sigma_r(t) = -N \cdot \sigma_r^{2-\frac{2}{N}}(t) \cdot \left\langle \nabla \ell(W_{1:N}(t)), \mathbf{u}_r(t) \mathbf{v}_r^{\top}(t) \right\rangle$$

Interpretation

- Given $W_{1:N}(t)$, depth affects evolution only via factors $N \cdot \sigma_r^{2-\frac{2}{N}}(t)$
- N = 1 (classic linear model): factors reduce to 1
- N ≥ 2: factors speed-up/slow-down large/small (resp) singular vals, in manner which intensifies with depth

Nadav Cohen (IAS \rightarrow TAU) Analyzing DL via Trajectories of GD DL Workshop, Simons, Jul'19 30 / 36

Implicit Bias Towards Low Rank

Generalization

Implicit Bias Towards Low Rank

Experiment

Completion of low-rank matrix via GD over LNN

Implicit Bias Towards Low Rank

Experiment

Completion of low-rank matrix via GD over LNN

Theoretical Example

For one observed entry and ℓ_2 loss, relationship between singular vals is:

Generalization

Implicit Bias Towards Low Rank

Experiment

Completion of low-rank matrix via GD over LNN

Theoretical Example

For one observed entry and ℓ_2 loss, relationship between singular vals is:

Depth leads to larger gaps between singular vals (lower rank)!

Nadav Cohen (IAS \rightarrow TAU)

Outline

D Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

Perspective

Understanding optimization and generalization in deep learning:

Perspective

Understanding optimization and generalization in deep learning:

• Language of classical learning theory is insufficient

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

• Guarantee of efficient convergence to global min (most general yet)

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

- Guarantee of efficient convergence to global min (most general yet)
- Depth can accelerate convergence (w/o any gain in expressiveness)!

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

- Guarantee of efficient convergence to global min (most general yet)
- Depth can accelerate convergence (w/o any gain in expressiveness)!

Generalization:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

- Guarantee of efficient convergence to global min (most general yet)
- Depth can accelerate convergence (w/o any gain in expressiveness)!

Generalization:

• **Depth enhances implicit regularization towards low rank**, yielding generalization for problems such as matrix completion

Nadav Cohen (IAS \rightarrow TAU) Analyzing DL via Trajectories of GD DL Workshop, Simons, Jul'19 33 / 36

Beyond Linear Neural Networks

Beyond Linear Neural Networks

Beyond Linear Neural Networks

Matrix Factorizations

Hierarchical Tensor Factorizations

Beyond Linear Neural Networks

Beyond Linear Neural Networks

Beyond Linear Neural Networks

Arithmetic NN are competitive in practice, and admit algebraic structure

Beyond Linear Neural Networks

Arithmetic NN are competitive in practice, and admit algebraic structure Preliminary analysis: their trajectories share properties with those of LNN...

Nadav Cohen (IAS \rightarrow TAU)

DL Workshop, Simons, Jul'19

D Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

3 Conclusion

Thank You