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Optimization and Generalization in Deep Learning via Trajectories

Optimization

Fitting training data by minimizing an objective (loss) function
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Optimization and Generalization in Deep Learning via Trajectories

Generalization

Controlling gap between train and test errors, e.g. by adding regularization
term/constraint to objective
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Optimization and Generalization in Deep Learning via Trajectories

Classical Machine Learning

Theme: make sure objective is convex!

Optimization
Single global minimum, efficiently attainable
Choice of algorithm affects only speed of convergence

Generalization
Bias-variance trade-off:

regularization train/test gap train err
more ↘ ↗
less ↗ ↘

Well developed theory
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Optimization and Generalization in Deep Learning via Trajectories

Deep Learning (DL)

Theme: allow objective to be non-convex

Optimization
Multiple minima, a-priori not efficiently attainable
Variants of gradient descent (GD) somehow reach global min

Generalization
Some global minima generalize well, others don’t
With typical data, solution found by GD often generalizes well
No bias-variance trade-off — regularization implicitly induced by GD

Not well understood
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Optimization and Generalization in Deep Learning via Trajectories

Analysis via Trajectories of Gradient Descent
Perspective

Language of classical learning theory may be insufficient for DL

Need to carefully analyze course of learning, i.e. trajectories of GD!

Case will be made via deep linear neural networks
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Case Study: Linear Neural Networks

Sources
On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization

Arora + C + Hazan (alphabetical order)
International Conference on Machine Learning (ICML) 2018

A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Arora + C + Golowich + Hu (alphabetical order)
International Conference on Learning Representations (ICLR) 2019

Implicit Regularization in Deep Matrix Factorization
Arora + C + Hu + Luo (alphabetical order)
Preprint 2019
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Case Study: Linear Neural Networks

Collaborators

Sanjeev Arora Elad Hazan

Wei Hu Noah GolowichYuping Luo
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Case Study: Linear Neural Networks

Linear Neural Networks
Linear neural networks (LNN) are fully-connected neural networks with
linear (no) activation

W1 W2 WNx y = WN • • • W2W1 x

LNN realize only linear mappings, but are highly non-trivial in terms of
optimization and generalization

Studied extensively as surrogate for non-linear neural networks:
Saxe et al. 2014
Kawaguchi 2016
Advani & Saxe 2017
Hardt & Ma 2017

Laurent & Brecht 2018
Gunasekar et al. 2018
Ji & Telgarsky 2019
Lampinen & Ganguli 2019
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Case Study: Linear Neural Networks Trajectory Analysis

Gradient Flow
Gradient flow (GF) is a continuous version of GD (step size → 0):

d
dt α(t) = −∇f (α(t)) , t ∈ R>0

Gradient descent

Gradient flow

Admits use of theoretical tools from differential geometry/equations
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Case Study: Linear Neural Networks Trajectory Analysis

Balanced Trajectories

W1 W2 WNx y = WN • • • W2W1 x

Loss `(·) for linear model induces overparameterized objective for LNN:
φ(W1, . . . ,WN) := `(WN · · ·W2W1)

Definition
Weights W1 . . .WN are balanced if W>

j+1Wj+1 = WjW>
j ,∀j .

↑
Holds approximately under ≈ 0 init, exactly under residual (Id) init

Claim
Trajectories of GF over LNN preserve balancedness: if W1 . . .WN are
balanced at init, they remain that way throughout GF optimization
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Case Study: Linear Neural Networks Trajectory Analysis

Implicit Preconditioning
Question
How does end-to-end matrix W1:N :=WN · · ·W1 move on GF trajectories?

W1 W2 WN  W1:N

Linear Neural Network Equivalent Linear Model

)NW,…, 1W(    Gradient flow over ?

Theorem
If W1 . . .WN are balanced at init, W1:N follows end-to-end dynamics:

d
dt vec [W1:N(t)] = −PW1:N (t) · vec

[
∇`
(
W1:N(t)

)]
where PW1:N (t) is a preconditioner (PSD matrix) that “reinforces” W1:N(t)
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Question
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d
dt vec [W1:N(t)] = −PW1:N (t) · vec

[
∇`
(
W1:N(t)

)]
where PW1:N (t) is a preconditioner (PSD matrix) that “reinforces” W1:N(t)

Adding (redundant) linear layers to classic linear model induces
preconditioner promoting movement in directions already taken!
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Case Study: Linear Neural Networks Optimization
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Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points
Prominent approach for analyzing optimization in DL (in spirit of classical
learning theory) is via critical points in the objective

Non-strict saddleGood local minimum
( ≈ global minimum)

Poor local minimum Strict saddle

Result (cf. Ge et al. 2015; Lee et al. 2016)
If: (1) there are no poor local minima; and (2) all saddle points are strict,
then GD converges to global min
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Motivated by this, many 1 studied the validity of (1) and/or (2)

1 e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018
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Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points
Prominent approach for analyzing optimization in DL (in spirit of classical
learning theory) is via critical points in the objective

Non-strict saddleGood local minimum
( ≈ global minimum)

Poor local minimum Strict saddle

(1) (2)

Result (cf. Ge et al. 2015; Lee et al. 2016)
If: (1) there are no poor local minima; and (2) all saddle points are strict,
then GD converges to global min

Motivated by this, many 1 studied the validity of (1) and/or (2)

Limitation: deep (≥ 3 layer) models violate (2) (consider all weights= 0)!

1 e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018
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Case Study: Linear Neural Networks Optimization

Applying Our Trajectory Analysis

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

d
dt vec [W1:N(t)] = −PW1:N (t) · vec

[
∇`
(
W1:N(t)

)]
PW1:N (t) � 0 when W1:N(t) has full rank =⇒ loss decreases until:

(1) ∇`
(
W1:N(t)

)
= 0 or (2) W1:N(t) is singular

`(·) is typically convex =⇒ (1) means global min was reached

Corollary
Assume `(·) is convex and LNN is init such that:

1 `(W1:N) < `(W ) for any singular W

2 W1 . . .WN are balanced

Then, GF converges to global min
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Case Study: Linear Neural Networks Optimization

Effect of Depth on Optimization

Viewpoint of classical learning theory:
Convex optimization is easier than non-convex

Hence depth complicates optimization

Our trajectory analysis reveals: not always true...
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Case Study: Linear Neural Networks Optimization

Acceleration by Depth

Discrete version of end-to-end dynamics for LNN:
vec
[
W1:N(t + 1)

]
←[ vec

[
W1:N(t)

]
− η · PW1:N (t) · vec

[
∇`(W1:N(t))

]
Claim
∀p > 2, ∃ settings where `(·) = `p loss (i.e. `(W ) = 1

m
∑m

i=1 ‖W xi−yi‖pp)
and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment
Regression problem from UCI ML Repository ; `4 loss

Depth can speed-up GD,
even without any gain in
expressiveness, and despite
introducing non-convexity!
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Case Study: Linear Neural Networks Generalization

Outline

1 Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks
Trajectory Analysis
Optimization
Generalization

3 Conclusion
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Case Study: Linear Neural Networks Generalization

Setting: Matrix Completion
Matrix completion: recover matrix given subset of entries

Can be viewed as classification (regression) problem:
observed entries

unobserved entries
←→
←→

training data
test data

Standard Assumption
Matrix to recover (ground truth) is low-rank

Classical Result (cf. Candes & Recht 2008)
Nuclear norm minimization (convex program) perfectly recovers (“almost
any”) low-rank matrix if observations are sufficiently many
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Case Study: Linear Neural Networks Generalization

Two-Layer Network ←→ Matrix Factorization
Matrix completion via two-layer LNN:

Parameterize ground truth as W2W1

W2 W1= *
?

?

4

5

5

?

?

4

?

?

?

4

Known as matrix factorization (MF)

Empirical Phenomenon
GD (with step size � 1 and init ≈ 0) over MF recovers low-rank matrices,
even when shared dim of W1,W2 doesn’t constrain rank!

Conjecture (Gunasekar et al. 2017)
GD (with step size � 1 and init ≈ 0) over MF converges to solution with
min nuclear norm (among those fitting observations)

Gunasekar et al. 2017 proved conjecture for a certain restricted setting
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Case Study: Linear Neural Networks Generalization

N-Layer Network ←→ “Deep Matrix Factorization”
Matrix completion via N-layer LNN:

Parameterize ground truth as WN · · ·W2W1
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):
implicit regularization

with depth 2 LNN (MF) ←→ minimizing nuclear norm
(surrogate for rank)

In light of our experiments, natural to hypothesize:
implicit regularization

with deeper LNN (DMF) ←→ minimizing other norm or
quasi-norm closer to rank

Example
Schatten-p quasi-norm to the power of p:

‖W ‖pSp
:=
∑

r σ
p
r (W ) where σr (W ) are singular vals of W

p = 1: nuclear norm, corresponds to depth 2 by Gunasekar et al. 2017

0 < p < 1: closer to rank, may correspond to higher depths
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Case Study: Linear Neural Networks Generalization

Current Theory is Oblivious to Depth

Theorem
In the restricted setting where Gunasekar et al. 2017 proved conjecture,
nuclear norm is minimized not just with depth 2, but with any depth ≥ 2

Proposition
There exist instances of this setting where nuclear norm minimization
contradicts Schatten-p quasi-norm minimization (even locally) ∀p ∈ (0, 1)

This implies:
implicit regularization with any depth 6= Schatten quasi-norm minimization

Instead, adopting lens of Gunasekar et al. 2017 leads to conjecturing:
implicit regularization with any depth = nuclear norm minimization

But our experiments show depth changes implicit regularization!
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture

Setup:
Completion of 100× 100 rank 5 matrix
Observed entries chosen uniformly at random

Many (5K) Observations:

reconst err nuclear norm effective rank
nuclear norm min
depth-2 LNN
depth-3 LNN
depth-4 LNN

Nuclear norm minimization recovers ground truth
LNN do so too
Correspondence, but can’t distinguish nuclear norm minimization
from any other bias leading to low rank
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture (cont’)
Few (2K) Observations:

reconst err nuclear norm effective rank
nuclear norm min
depth-2 LNN
depth-3 LNN
depth-4 LNN

Nuclear norm minimization does not recover ground truth

LNN focus on lowering effective rank at expense of nuclear norm

Discrepancy!

LNN implicitly minimize nuclear norm sometimes but not always!

Hypothesis
Single norm (or quasi-norm) not enough to capture implicit regularization,
detailed account for trajectories is needed
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture (cont’)
Few (2K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 1 e -01 210 9
depth-2 LNN 2 e -02 217 7
depth-3 LNN 3 e -05 221 5
depth-4 LNN 2 e -05 221 5

Nuclear norm minimization does not recover ground truth
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Discrepancy!
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Case Study: Linear Neural Networks Generalization

Trajectory Analysis −→ Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:
d
dt vec [W1:N(t)] = −PW1:N (t) · vec

[
∇`
(
W1:N(t)

)]
Denote:
{σr (t)}r — singular vals of W1:N(t)
{ur (t)}r

/
{vr (t)}r — corresponding left/right (resp) singular vecs

Theorem
d
dtσr (t) = −N · σ2−

2
Nr (t) ·

〈
∇`
(
W1:N(t)

)
,ur (t)v>r (t)

〉
Interpretation

Given W1:N(t), depth affects evolution only via factors N · σ2−
2
Nr (t)

N = 1 (classic linear model): factors reduce to 1
N ≥ 2: factors speed-up/slow-down large/small (resp) singular vals,
in manner which intensifies with depth
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Case Study: Linear Neural Networks Generalization

Implicit Bias Towards Low Rank

Experiment
Completion of low-rank matrix via GD over LNN
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Theoretical Example
For one observed entry and `2 loss, relationship between singular vals is:

depth 1: linear

σ1 

σ2 

depth 2: polynomial

σ1 

σ2 

depth≥ 3: asymptotic

σ1 

σ2 

Depth leads to larger gaps between singular vals (lower rank)!
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Conclusion

Recap

Perspective
Understanding optimization and generalization in deep learning:

Language of classical learning theory is insufficient
Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks
Trajectory analysis:

Depth induces preconditioner promoting movement in directions taken

Optimization:
Guarantee of efficient convergence to global min (most general yet)
Depth can accelerate convergence (w/o any gain in expressiveness)!

Generalization:
Depth enhances implicit regularization towards low rank, yielding
generalization for problems such as matrix completion
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Conclusion

Beyond Linear Neural Networks

W1 W2 WN

Linear Neural Networks Matrix Factorizations

End-to-end mapping = WN · · · W1

x y

overall matrix
individual 

matrix param

Hierarchical Tensor Factorizations

individual (3-way) 
tensor param

overall 
tensor

Tree Factorization

Train Factorization

Arithmetic NN are competitive in practice, and admit algebraic structure
Preliminary analysis: their trajectories share properties with those of LNN...
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