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Perspective: Understanding Deep Learning

Statistical Learning Setup

X — instance space (e.g. R190%190 for 100-by-100 grayscale images)

Y — label space (e.g. R for regression or [k] := {1,..., k} for classification)
D - distribution over X x Y (unknown)

0:YxY — Rsg — loss func (e.g. £(y,y) = (y — §)? for Y = R)

Task
Given training sample S = {(X1,y1),...,(Xm, ¥m)} drawn i.i.d. from D,
return hypothesis (predictor) h: X — ) that minimizes population loss:

Lp(h) == E(x,yy~pll(y, h(X))]

Approach
Predetermine hypotheses space H C Y%, and return hypothesis h € H
that minimizes empirical loss:

Ls(h) = Eqxyyslily AN = - 37 by, (X))
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Perspective: Understanding Deep Learning

Three Pillars of Statistical Learning Theory:
Expressiveness, Generalization and Optimization

)
h*/ Approximation Error
— s .

Expressiveness
E ® <™ Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

S )

f5 — ground truth (argminscyx Lp(f))

h}, — optimal hypothesis (argmingcq, Lp(h))
h& — empirically optimal hypothesis (argmingcq, Ls(h))

h — returned hypothesis
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Perspective: Understanding Deep Learning

Classical Machine Learning

fﬁ
/c
> Approximation Error
(Expressiveness)
Training Error
(Optimization)
Optimization
Empirical loss minimization is a convex program:
h~ hg ( training err ~0)
Expressiveness & Generalization
Bias-variance trade-off:
H approximation err | estimation err
expands AV /!
shrinks Ve N\
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Perspective: Understanding Deep Learning

Deep Learning

fﬁ

/ o
§<  Approximation Error

Expressiveness)

Training Error
(Optimization)

Optimization
Empirical loss minimization is a non-convex program:
@ h% is not unique — many hypotheses have low training err

@ Stochastic Gradient Descent somehow reaches one of these
Expressiveness & Generalization

Vast difference from classical ML:
@ Some low training err hypotheses generalize well, others don't

e W/typical data, solution returned by SGD often generalizes well
@ Expanding H reduces approximation err, but also estimation err!
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Convolutional Networks as Hierarchical Tensor Decompositions
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Convolutional Networks as Hierarchical Tensor Decompositions

Convolutional Networks

Most successful deep learning arch to date!

Classic structure:

inputimage  feature maps feature maps feature maps feature maps
(256x256) (256x256) (128x128)  (128x128) output
T

fully
L layer L layer 1 layer 1 layer | connected |

Modern variants:

/'Iw

| B X
S R e 5 e Bl
ANNANANNANZT

Traditionally used for images/video, nowadays for audio and text as well
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Convolutional Networks as Hierarchical Tensor Decompositions
Tensor Product of L? Spaces
ConvNets realize func over many local elements (e.g. pixels, audio samples)

Let RS be the space of such elements (e.g. R® for RGB pixels)

Consider:
o L?(IR%) - space of func over single element
o L2((R%)N) - space of func over N elements
Fact
L2((R%)N) is equal to the tensor product of L2(R®) with itself N times:
L((R)Y) = 2(R°) @ - @ L}(R®)

N times

Implication
If {f4(x)}32 is a basis! for L?(IR®), the following is a basis for L2((RS)N):

{(xl, Ce X)) H,N:1 fd,(xi)}oo

!Set of linearly independent func w/dense span

di...dy=1
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Convolutional Networks as Hierarchical Tensor Decompositions
Coefficient Tensor

For practical purposes, restrict L2(R®) basis to a finite set: f;(x). . .fy(x)

We call fi(x)...fm(x) descriptors

General func over N elements can now be written as:

M N
h(xi,...,xy) = Zdl..,d,vzl Ady...dy Hi:l fdi(xi)

w/func fully determined by the coefficient tensor:

N times

——
Ae RM XX M
Example
@ 100-by-100 images (N = 10%)
@ pixels represented by 256 descriptors (M = 256)

Then, func over images correspond to coeff tensors of:
@ order 10*

@ dim 256 in each mode
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Convolutional Networks as Hierarchical Tensor Decompositions

Decomposing Coefficient Tensor

—— Convolutional Arithmetic Circuit

M N
h(x1,...,xy) = Zdl...d,\,:l Ady...dy Hi:l fa;(x7)

Coeff tensor A is exponential (in # of elements N)

— directly computing a general func is intractable

Observation
Applying hierarchical decomposition to coeff tensor gives ConvNet w/linear
activation and product pooling (Convolutional Arithmetic Circuit)!

decomposition type network structure
(mode tree, internal ranks etc) (depth, width, pooling etc)

decomposition parameters —> network weights
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Convolutional Networks as Hierarchical Tensor Decompositions
Example 1: CP Decomposition — Shallow Network

M N
h(X]_, e ,XN) = Zdl...d/\/:l Adl...dN Hi:l fdi(xi)

W/CP decomposition applied to coeff tensor:
A Zro 1717y aovlfy ® aO 2 Y ® ® aova‘/
y=1

func is computed by shallow network (single hidden layer, global pooling):

input X representation 1x1 conv

_ g a global dense
. / pooling  (output)
X; 5+

rep(i,d) = M L
COI‘\V(],}/) <a°"”" rep(j.:))

pool ()= ] conv( < JRERY pool()>

j covers space

Nadav Cohen (IAS) Understanding Deep Learning via Physics Physics-ML, CUNY, Dec'17



Convolutional Networks as Hierarchical Tensor Decompositions

Example 2: HT Decomposition —> Deep Network

M N
h(x1, ..., xn) = Zd:l...d/v:l Ady...dy Hi:l fa, (xi)

W /Hierarchical Tucker (HT) decomposition applied to coeff tensor:

Pl = Z’“ gl . g02i—La g 40,2
a=1 ¢
P 2:”‘1 Ly . gl=12=La g gl-12a
a=1 o
A = -1 11y ¢L71,1,a ® ¢L71,2,a
B a=1 o

func is computed by deep network w/size-2 pooling windows:

input X representation 1x1 conv .

D [ ] 1x1 conv oolin dense

g / P i (output)
e o e 0 .
M D T W, P 0] (1 %
rep(i,d)=f, conv, (J,7)=(a""",rep(j.:)) pool,_, (7 H conv,_,(j" y)

o0l (j, y): IT conv, (i) e by :

p AL comald out(y)=(a"*", pool,_, (%))
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Convolutional Networks as Hierarchical Tensor Decompositions
Generalization to Other Types of Convolutional Networks

We established equivalence:

hierarchical tensor decompositions «— conv arith circuits (ConvACs)

ConvACs deliver promising empirical results,! but other types of ConvNets
(e.g. w/RelLU activation and max/ave pooling) are much more common

The equivalence extends to other types of ConvNets if we generalize the
notion of tensor product:?

Tensor product:
(A®B)g,. o o = Adr..dp " Bap.s...dp.q
Generalized tensor product:
(A Qg B)dl__,dpm = g(Ad,...dp, BdP+1~~dP+Q)
(same as ® but w/general g : RxR—R instead of mult)

! Deep SimNets, CVPR'16 ; Tensorial Mixture Models, arXiv'17
2 Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML'16
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Expressive Efficiency
Expressiveness

s ” N

fp
72/ { ]
i Approximation Error
_ hg A
h ° (Expressiveness)
[ ]

S /

f5 — ground truth (argminscyx Lp(f))

h}, — optimal hypothesis (argmingcq, Lp(h))
h& — empirically optimal hypothesis (argmin,c4 Ls(h))

h — returned hypothesis
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Expressive Efficiency
Expressive Efficiency (informal)

Expressive efficiency compares network arch in terms of their ability to
compactly represent func

Let:
@ H,a — space of func compactly representable by network arch A

e Hg — - network arch B

A is efficient w.r.t. B if H 4 is a strict superset of Hpg

Ho 3y

A is completely efficient w.r.t. B if Hg has zero "volume” inside Ha
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Expressive Efficiency

Expressive Efficiency — Formal Definition

Network arch A is efficient w.r.t. network arch B if:
(1) Vfunc realized by B w/size rg can be realized by A w/size ra € O(rg)

(2) dfunc realized by A w/size ry requiring B to have size rg € Q(f(ra)),
where f(-) is super-linear

A is completely efficient w.r.t. B if (2) holds for all its func but a set of
Lebesgue measure zero (in weight space)
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Expressive Efficiency Efficiency of Depth
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Expressive Efficiency

Efficiency of Depth

Efficiency of Depth

152 layers
—
\

\

ILSVRC'15  ILSVRC'14 lI_SVRC 14 ILSVRC'13  ILSVRC'12
ResNet GoogleNet AlexNet
ImageNet Classification top-5 error (%)
’,Iccv Kaming He, XeangyuZhang Shaogng Ren, & Jan Sun “Deep Reudual Learning for image

shallow

ILSVRC'11  ILSVRC'10

a° Rocogréson” 3y 201

Research

Longstanding conjecture

Efficiency of depth: deep ConvNets realize func that require shallow

ConvNets to have exponential size (width)

Nadav Cohen (IAS)
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Expressive Efficiency Efficiency of Depth

Tensor Decomposition Viewpoint

M N
h(xy, ... xn) = Zdll..d,\,:l Ady...dy Hi:l fa, (xi)

Shallow Network CP Decomposition

input re conv
global ro
ﬁ i pool dense < A — gty . g0y QR ® a0V
: e 2 2
ro

HT Decomposition
Deep Network ) 0 . : .
P = E : abh 7. a0l g g0.2a
a=1

input rep
——7

onv
[ — 7 a====p pool e
l = I w"vpool dense f fi—1 g : P
) I @6_@ ¢ s ¢/,J,'y _ E an,’y . ¢I*1,2171,o¢ ® ¢171,2/,a
a=1

ry
A = E L-t ably  gl-lLlo g gl-12a
a=1

Efficiency of depth
HT decomposition realizes tensors that require CP decomposition to have

exponential rank (ry exponential in N)

Understanding Deep Learning via Physics
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Expressive Efficiency

HT vs. CP Analysis

Efficiency of Depth

Besides a negligible (zero measure) set, all parameter settings for HT
decomposition lead to tensors w/CP-rank exponential in N

HT Decomposition

P = Zro 2l . 02—l g 30,25
«Q

a=1
AUED DI

1-1,2j-1, 1-1,2j,
gl gl Le g g2

r_
A = Z L—1 aL,l,y . ¢L—1,1,a ® ¢L—1,2,a

a=1 ¢

CP Decomposition

_ o 11y .01y 0,N,y
A=> Y a e wa

Nadav Cohen (IAS)
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Expressive Efficiency Efficiency of Depth

HT vs. CP Analysis (cont'd)

Theorem proof sketch

@ [A] — matricization of A (arrangement of tensor as matrix)

@ © — Kronecker product for matrices. Holds: rank(A®B) = rank(A)-rank(B)
@ Relation between tensor and Kronecker products: [A ® B] = [A] ® [8]
Implies: rank[A] < CP-rank(.A)

By induction over levels of HT, rank[.A] is exponential almost always:
e Base: “SVD has maximal rank almost always”

o Step: rank[A ® B] = rank([A] ® [B])) = rank[.A]-rank[B], and
“linear combination preserves rank almost always”

HT Decomposition
¢1,j,'y _ 2;0:1 aé;j’“’ .a02—la ® 20,2,
1,j I
@' — 2211 et ¢/12} 1a®¢1121a
A — Z;Liély ¢L 110¢®¢L 1,2,
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Expressive Efficiency Efficiency of Depth

HT vs. CP Analysis (cont'd)

Randomizing weights of deep ConvAC by a cont distribution leads, w.p. 1,
to func that require shallow ConvAC to have exponential # of channels

Deep Network

input X i 1x1 conv

pooling

D e 1x1 conv pooling dense
- o B
=1 R Bl
i ] | 4,
rep(i.d)=1, (x,) convy(j.7)=(a""",rep(j.: ) / puﬂlu(/ I conve,(ivy)
fena) /
pool, (j.7)= . 71'_[”' conv, (j oul(y):<a“‘. pool, 1(:»

Shallow Network

input X i 1x1 conv
D e global  dense
pooling  (output)
g Bvd S
To ] ro Y

Dt o)
conv(j‘;/):<a°"/,f5p(j-i)> / out(y)=
pool ()= T conv(j.») (a7, pool ()

J covers space

W /ConvACs efficiency of depth holds completely!
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Expressive Efficiency Efficiency of Depth

HT vs. CP Analysis — Generalizations

HT vs. CP analysis may be generalized in various ways, e.g.:

o Comparison between arbitrary depths
Penalty in resources is double-exponential w.r.t. # of layers cut-off

o)== f=o(")

# of parameters

# of layers
o Adaptation to other types of ConvNets

W /ReLU activation and max pooling, deep nets realize func requiring
shallow nets to be exponentially large, but not almost always

Efficiency of depth is incomplete w/ReLU ConvNets!
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Expressive Efficiency Efficiency of Interconnectivity
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Expressive Efficiency Efficiency of Interconnectivity

Efficiency of Interconnectivity

Classic ConvNets have feed-forward (chain) structure:

224X 224% 3 224 % 224 x 64
Convolution + ReLU
&) maxvavhug
() it comeces et

112x 112 %128

56 56 % 256

28x28x512 7x7x512
1414 x 512
' 1x1x4095 1x1x1000
- —

Modern ConvNets employ elaborate connectivity schemes:

Ew ﬁ@ By

Inception (GooglLeNet) ResNet ‘ DenseNet

/s

Question

Can such connectivities lead to expressive efficiency?
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Expressive Efficiency Efficiency of Interconnectivity

Dilated Convolutional Networks

We focus on dilated ConvNets (D-ConvNets) for sequence data:

size-2 conv:
dilation-2"*

output Qp® @ & & & & & & & & & @& O & O

2202020,

Optd & @& 6 & & & & & & & & & & & .

@
L-1 /@ :

@

@

Q—Q

hidden | @p® @ & 4 @ & & & & 8 F & & & size-2 conv:

VI e S D Pl Ry ™

—

) Re Y @ Y @ @ Y & 9@ @ I siz.e-Z.conv:
, St v v v v St S S dieom
input O™ & & & & & & & 9 & & & & & & & @
Time — N T T T T T T T
27 241 242 e e o eee 3 t-2 t-1 t t+1

N:=2" time points

@ 1D ConvNets
@ No pooling

o Dilated (gapped) conv windows

Underlie Google's WaveNet & ByteNet — state of the art for audio & text!

Nadav Cohen (IAS) Understanding Deep Learning via Physics Physics-ML, CUNY, Dec'17 30/ 55



Expressive Efficiency Efficiency of Interconnectivity

Dilations and Mode Trees

W /D-ConvNet, mode tree underlying corresponding tensor decomposition
determines dilation scheme

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} 0000000OOOOOOOOO Q
dilation-8
11,2,3,0,5,6,1,8) 19,10,11,12,13,14,15,16} o
dilation-4
0000000000000 00L00
dilation-2
@]
dilation-1
[¢] [¢]
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} [eXoXoXoXoXoloRoJo o oo oo oNoNo]
dilation-4
{1,2,3,49,10,11,12} 15,6,7,8,13,14,15,16} 0000000000009 00 O
dilation-8
O00QPOV00POVOPOOO0Y O
dilation-1

OOOOOOO
dilation-2 T {1
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Expressive Efficiency Efficiency of Interconnectivity

Mixed Tensor Decompositions

Let: T, T — mode trees ; mix(T, T) — set of nodes present in both trees

mode tree T mix(T,T)

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8} 9,10,11,12,13,18,15,16}

( [ 1,234 | [ {5678 | {9,10,11,12} {13,14,15,16} )

[y ] [(Ba] [Ge | [{78 ] (o] [(112)] [{1314}] 15,16,

2i
mode tree T

1,2,3,4,56,7,8,9,10,11,12,13,14,15,16)

{1,2,3,49,10,11,12}

(I {1,234} | {5678 | 9,10,11,12 13,14,15,16 )

: : : ; : : : ; ; : :1011: 13,15, 14,16
[y ] (2] [31] Ly ] [48)] [{9}] [{10}] [14)] [{15}] [{16}]

A mixed tensor decomposition blends together T and T by running their
decompositions in parallel, exchanging tensors in each node of mix(T, T)

{5,6,7,8,13,14,15,16)

Nadav Cohen (IAS) Understanding Deep Learning via Physics Physics-ML, CUNY, Dec'17 32 /55



Expressive Efficiency Efficiency of Interconnectivity

Mixed Dilated Convolutional Networks

Mixed tensor decomposition corresponds to mixed D-ConvNet, formed
by interconnecting the networks of T and T:

T
output D
P 4
diaton-8 | @ & & @ & & & & & & O & & O D ? (57
network diation-4 | & & & @& @& & @& & & & O & O I 9 »? (57
Of T diaton2 | @ & & & & & & H & & O H O O 9D /vﬂ (57
. e pnl | o T
diation-1 ([ & &4 & S \9Y A O O\Id O O O\ & I| S\D
P ey T Ty YTt T b
input Y 9 & & & | & 9 I | 9 <T P |9 49 <T 9 @
RSN RSN RSN RSN
dilation-2 | () @ & @ @& | & & ﬂ\ﬁ’ 9 & ﬂ\ﬁ’ g & 8| 0
network dilation-1 | ) &) 9 @ Eﬂ%fﬂ 0 & (a7 = =7
T \
Of T dlaion8 |0 @& @ & & & & & & & & @ 6 I & 0|60 &
diation-4 | @ & & @& & & & O I O O @mﬁ' (57
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Expressive Efficiency Efficiency of Interconnectivity

Mixture — Expressive Efficiency

Theorem

Mixed tensor decomposition of T and T can generate tensors that require
individual decompositions to grow quadratically (in terms of their ranks)

Corollary

Mixed D-ConvNet can realize func that require individual networks to grow
quadratically (in terms of layer widths)

A

Experiment

TIMIT Individual Phoneme Classification

Accuracy

4 6
Connections up to layer

Interconnectivity can lead to expressive efficiency! ‘
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Inductive Bias via Quantum Entanglement
Inductive Bias

Networks of reasonable size can only realize a fraction of all possible func

Expressive efficiency does not explain why this fraction is effective

all func
Why are these

functions interesting?

Hy 3 D

To explain the effectiveness, one must consider the inductive bias:
@ Not all func are equally useful for a given task

@ Network only needs to represent useful func

Nadav Cohen (IAS) Understanding Deep Learning via Physics Physics-ML, CUNY, Dec'17



Inductive Bias via Quantum Entanglement

Inductive Bias via Physics

Unlike expressive efficiency, inductive bias can’t be studied via math
alone — it requires reasoning about nature of real-world tasks

3,000 kg/m?®
W =Fs

Physics bears the potential to bridge this gap!
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Inductive Bias via Quantum Entanglement

Modeling Interactions

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Key property of such func:
interactions modeled between different sets of elements

Modeling strong interaction between
and blue pixels is important here

Less important here

P

Partition A Partition B
Questions

@ What kind of interactions do ConvNets model?

@ How do these depend on network structure?

Nadav Cohen (IAS) Understanding Deep Learning via Physics Physics-ML, CUNY, Dec'17



Inductive Bias via Quantum Entanglement
Quantum Entanglement
1 2 3 os e N1 N

In quantum physics, state of particle is represented as vec in Hilbert space:

M

article state) = a4 - cH
p )= )
coeff  basis

System of N particles is represented as vec in tensor product space:

M
[system state) = | Ad.ay [Ya) @ @ ve,) EHO O H

coeff tensor N times

Quantum entanglement measures quantify interactions that a system
state models between sets of particles
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Inductive Bias via Quantum Entanglement

Quantum Entanglement (cont’d)

M
|system state) = Zdl...szl Ady...dy |V )®- - -®|ay)

e W |

-Z'C

Consider partition of the N particles into sets Z and Z¢

[A]lz — matricization of coeff tensor A w.r.t. Z:
@ arrangement of A as matrix

@ rows/cols correspond to modes indexed by Z/Z¢

Physics-ML, CUNY, Dec'17 40 / 55
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Inductive Bias via Quantum Entanglement

Quantum Entanglement (cont’d)

1 2 3 cee cee N-1 N
7z 7°
_\\M . o [A]z — matricization
system state) =3 Ay gy W) ®- @[, | | Al matriciz2

Let o = (01,02,...,0Rr) be the singular vals of [A]z

Entanglement measures between particles of Z and of Z¢ are based on o:
o Entanglement Entropy: entropy of (o2, ...,0%)/ ||lo|3
o Geometric Measure: 1 — o}/ ||o||3

e Schmidt Number: ||o||, = rank[A]z
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Inductive Bias via Quantum Entanglement

Entanglement with ConvACs

Structural equivalence:

state of

quantum system (many-body) state many particles

PR
4

M TR EE

|system state) = Z Adydy - |0d)) ® - @ [hay) whh b
dr...dy=1 N—— Poens

coeff tensor N

funcoyer

func realized by ConvAC many pixels

i L .

h(x1,...,xy) = ) Zd: 1 Adyody fay(x1) -+ g (xn) ﬁ
1...dN= o B i

coeff tensor

We may quantify interactions ConvAC models between input
sets by applying entanglement measures to its coeff tensor!
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Inductive Bias via Quantum Entanglement

Entanglement with ConvACs — Interpretation

When func h realized by ConvAC is separable w.r.t. input sets Z/Z°¢:

Elgvg, s.t. h(X1, . 7XN) = g((Xi)ieI) -g' ((Xi/)i'ezv)

it does not model any interaction between the input sets

In a stat setting, this corresponds to independence of (x;)iez and (x;/)icze

Entanglement measures on coeff tensor of h quantify dist from separability:

o A has high (low) entanglement w.r.t. Z/Z¢
= h is far from (close to) separability w.r.t. Z/Z°¢

@ Choice of entanglement measure determines distance metric
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Inductive Bias via Quantum Entanglement
Quantum Tensor Networks

Coeff tensors of quantum many-body states are simulated via:
Tensor Networks

- R~
R
R S AREad
Tensor Networks (TNs):

@ Graphs in which: vertices +— tensors edges «— modes

scalar vector matrix order-3 tensor

O —O —O0— *ﬁ)*

e Edge (mode) connecting two vertices (tensors) represents contraction

inner-product matrix g ohted b
between vectors multiplication edges weighted by
0—@ —0—O0— mode dimensions
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Inductive Bias via Quantum Entanglement

ConvACs as Tensor Networks

Coeff tensor of ConvAC may be represented via TN:

input rep conv
pool
D “P o conv | d
£=7 pool dense
<]
E— coe vy
D [ Dr E’
M ro ro rig ri1
tree structure
corresponds to ConvAC
pooling geometry
r M1 -
open nodes L L edge weights
correspond to ConvAC - S correspond to ConvAC
inputs (e.g. pixels) : : layer widths
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Inductive Bias via Quantum Entanglement

Entanglement via Minimal Cuts

Theorem (“Quantum Max Flow/Min Cut")

Maximal Schmidt entanglement ConvAC models between input sets 7 /¢
is equal to min cut in respective TN separating nodes of Z/Z¢

ConvAC entanglement TN min cut separating
between input sets respective node sets
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Inductive Bias via Quantum Entanglement

Controlling Entanglement (Interactions)

Controlling entanglement (interactions) modeled by ConvAC is equivalent
to controlling min cuts in respective TN

tree structure
corresponds to ConvAC
pooling geometry

open nodes edge weights
correspond to ConvAC s s correspond to ConvAC
inputs (e.g. pixels) . . layer widths
r

Two sources of control: layer widths,

We may analyze the effect of ConvAC arch on
the interactions (entanglement) it can model!
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Inductive Bias via Quantum Entanglement

Controlling Interactions — Layer Widths

Deep (early) layer widths are important for long (short)-range interactions

Experiment

100

90

Global Task

-

Local Task

@
S

70

accuracy

e—e Wide-base - test
+ -+ Wide-base - train
e—e \Wide-tip - test
+ —+ Wide-tip - train

60 |-

50

40
5 10 15 0 25 30

2
# of channels parameter - r
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Inductive Bias via Quantum Entanglement

Controlling Interactions — Pooling Geometry

Input elements pooled together early have stronger interaction

Experiment

datd

high losed low high
symmetry: low symmetry: low symmetry: high symmetry: high

square pooling mirror pooling
(local interactions) (interactions between reflections)

archs

closed| task . symmetry task

[ — . 1]

« square pool - train
=—= square pool - test
mirror pool - train
~_mirror pool - test

breadth (# of channels in each hidden layer) xch hidden layer)
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Conclusion

© Conclusion
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Conclusion
Conclusion

@ Three pillars of statistical learning theory:
Expressiveness Generalization Optimization

o Well developed theory for classical ML

o Limited understanding for Deep Learning

@ We derive equivalence:
ConvNets «+— hierarchical tensor decompositions
and use it to analyze expressive efficiency

@ To understand expressiveness, efficiency is not enough — one must
consider the inductive bias:

e This cannot be done via math alone

o Physics bears the potential to bridge this gap!

@ We use Quantum Entanglement and Tensor Networks to study
ConvNets' ability to model interactions
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Conclusion
Future Possibilities

Further studying inductive bias of ConvNets via Quantum Physics:

@ Understanding overlapping operations via MERA disentanglers

o Characterizing correlations (interactions) in natural data-sets

Transfer of computational tools between Deep Learning and Physics:

@ Training ConvNets w/Tensor Network algorithms (e.g. DMRG)

@ Quantum Computation (wave function reconstruction) w/SGD

AND MUCH MORE...
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Conclusion

Recent Development (Levine et al):

From ConvNets to Recurrent Neural Networks (RNNs)

RNNs — most successful Deep Learning arch for sequence processing

Text prediction: The  white Siamese cat slept on the bed/rug
©@ @ @© © @© @ @ (@
“Start" “End"

Start-End Entanglement quantifies long-term memory of a network

Authors analyze this via TNs (MPS and generalizations):
L=1: L=2:

\ \ \ \ \ ‘
x X

) () f6P) ()

Show Start-End Entanglement increases exponentially w/depth!
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Outline
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Thank You
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