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Inductive Bias of Deep Convolutional Networks
Convolutional networks exhibit depth efficiency: 1 2

Functions realized by deep networks of polynomial size require super-
polynomial size for being realized (or approximated) by shallow networks

This does not explain why functions brought forth by depth are effective

all functions

functions efficiently 
realizable by deep networks

functions efficiently realizable
by shallow networks

Why are these 
functions 

interesting?

An explanation must consider the inductive bias, i.e. the assumptions
encoded into functions, and their suitability for real-world tasks

1On the Expressive Power of Deep Learning: A Tensor Analysis, COLT’16
2Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML’16
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Convolutional Arithmetic Circuits
Convolutional networks – locality, weight sharing, pooling:

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

    0,

0 , , ,:conv j rep j  a

    0 0 '
, ',

j window j
pool j P conv j 




    1 1 ' covers space
',L L j

pool P conv j  

   ,

1, :L y

Lout y pool  a

X

σ(·) – point-wise activation P{·} – pooling operator

Convolutional arithmetic circuits are a special case:

linear activation: σ(z) = z

product pooling: P{cj} =
∏

j cj
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Convolutional Arithmetic Circuits (cont’)
Convolutional arithmetic circuits are theoretically appealing:

Algebraic in nature (sums and products)
Exhibit complete depth efficiency 1 – almost all functions realizable by
deep networks cannot be efficiently realized by shallow ones

Also deliver promising results in practice:
Excel in computationally constrained settings 2

Classify optimally with missing data 3

We analyze convolutional arithmetic circuits, and empirically validate our
findings with ReLU activation and max/average pooling as well (adapting
analysis as done with depth efficiency 4 is left for future work)

1On the Expressive Power of Deep Learning: A Tensor Analysis, COLT’16
2Deep SimNets, CVPR’16
3Tensorial Mixture Models, arXiv
4Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML’16
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Equivalence to Tensor Decompositions
Convolutional arithmetic circuit:

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

   0,

0 , , ,:conv j rep j  a

   0 0

'

, ',
j window j

pool j conv j 


     1 1

' covers space

',L L

j

pool conv j   
   ,

1, :L y

Lout y pool  a

X

x1. . .xN – input patches

fθ1 . . .fθM : Rs → R – representation functions

{al ,γ} – linear (conv/output) weights
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Equivalence to Tensor Decompositions (cont’)
Convolutional arithmetic circuit:

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

   0,

0 , , ,:conv j rep j  a
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'

, ',
j window j

pool j conv j 


     1 1

' covers space

',L L

j

pool conv j   
   ,

1, :L y

Lout y pool  a

X

Function realized by network output y :

hy (x1, . . . , xN) =
∑M

d1...dN=1
Ay

d1...dN

∏N
i=1

fθdi
(xi)

Ay – coefficient tensor:

Order N (# of patches), dim M (# of rep funcs) in each mode

Entries are polynomials in network’s linear weights (al ,γ)
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Shallow Network
Single hidden layer with global pooling:

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix

M 0r 0r Y

   0,, , ,:conv i rep i  a

   
covers space

,
i

pool conv i  
 

 1, , :y

out y

pool



a

X

Coefficient tensors given by CP (rank-1) decomposition:

Ay =
∑r0

γ=1
a1,y
γ · ⊗Na0,γ
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Deep Network
Size-4 pooling windows, L = log4 N hidden layers:

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer log4N-1

ix

M 0r 0r 1Lr  1Lr  Y
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Coefficient tensors given by hierarchical decomposition:

φ1,γ︸︷︷︸
order 4

=
∑r0

α=1
a1,γ
α · ⊗4a0,α , γ ∈ [r1]

· · ·

φl,γ︸︷︷︸
order 4l

=
∑rl−1

α=1
al,γ
α · ⊗4φl−1,α , l ∈ {2. . .L− 1}, γ ∈ [rl ]

· · ·

Ay︸︷︷︸
order 4L N

=
∑rL−1

α=1
aL,y
α · ⊗4φL−1,α

Nadav Cohen (HUJI) Inductive Bias through Pooling Geometry NIPS 2016 Tensor Workshop 8 / 21



Separation Rank

Partition BPartition A

I -
J -

The separation rank of function h(x1, . . . , xN) w.r.t. partition I ·∪J = [N]:

sep(h; I, J) := min
{
R : ∃g1. . .gR , g ′1. . .g ′R s.t.

h(x1, . . . , xN) =
∑R

ν=1
gν((xi)i∈I)·g ′ν ((xj)j∈J)

}
In words, sep(h; I, J) is the minimal number of summands that together
give h, where each summand is separable w.r.t. (I, J)
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Separation Rank – Interpretation

If sep(h; I, J) = 1 then h is separable w.r.t. (I, J):

No interaction between (xi)i∈I and (xj)j∈J is modeled

In probabilistic setup: (xi)i∈I and (xj)j∈J are statistically independent

The higher sep(h; I, J) is, the farther h is from separability, i.e. the more
correlation is modeled between (xi)i∈I and (xj)j∈J

Formally (details in the paper):

Define D(h; I, J) – L2 distance of h/ ‖h‖ from the set of separable
functions w.r.t. (I, J)

It holds that D(h; I, J) ≤
√
1− sep(h; I, J)−1

Inequality holds with equality in cases of interest
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Separation Ranks of Convolutional Arithmetic Circuits
Function realized by convolutional arithmetic circuit:

hy (x1, . . . , xN) =
∑M

d1...dN=1
Ay

d1,...,dN

∏N
i=1

fθdi
(xi)

x1 . . . xN – input patches

Ay – coefficient tensor (N modes)

Define JAy KI,J – matricization of Ay w.r.t. partition I ·∪J = [N]:

Arrangement of Ay as matrix

Rows/columns correspond to modes indexed by I/J

Claim
sep(hy ; I, J) = rankJAy KI,J

We thus study correlations modeled by convolutional arithmetic circuits
through ranks of matricized coefficient tensors
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Separation Ranks of Shallow Network
Shallow network (single hidden layer):

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix
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X

Matricize CP decomposition of coefficient tensor (� – Kronecker product):

JAy KI,J =
∑r0

γ=1
a1,y
γ ·

(
�|I|a0,γ

) (
�|J|a0,γ

)>
Implies rankJAy KI,J≤r0

Shallow network only realizes separation
ranks (correlations) linear in its size
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Separation Ranks of Deep Network
Deep network (L = log4 N hidden layers):
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Matricize hierarchical decomposition of coefficient tensor:

Jφ1,γKI1,k ,J1,k =
∑r0

α=1
a1,γ
α ·

4
�

t=1
Ja0,αKI0,4(k−1)+t ,J0,4(k−1)+t

· · ·
Jφl,γKIl,k ,Jl,k =

∑rl−1

α=1
al,γ
α ·

4
�

t=1
Jφl−1,αKIl−1,4(k−1)+t ,Jl−1,4(k−1)+t

· · ·
JAy KI,J =
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α ·

4
�

t=1
JφL−1,αKIL−1,t ,JL−1,t

where Il,k := (I-(k-1)4l) ∩ [4l ], Jl,k := (J-(k-1)4l) ∩ [4l ]
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Separation Ranks of Deep Network (cont’)
Deep network (L = log4 N hidden layers):

   ,
d irep i d f x
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Theorem
Maximal rank that JAy KI,J can take is:

Exponential (in N) for “interleaved” partitions,
e.g. ≥ min{r0,M}N/4 for I = {1, 3, . . . ,N − 1}, J = {2, 4, . . . ,N}

Polynomial (in network size) for “coarse” partitions,
e.g. ≤ rL−1 for I = {1, . . . ,N/2}, J = {N/2 + 1, . . . ,N}

Deep network realizes exponential separation ranks (correlations)
for favored partitions, polynomial (in network size) for others
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Inductive Bias through Pooling Geometry

Partition BPartition A

I -
J -

Pooling geometry of deep network links partitions I ·∪J = [N] to spatial
input patterns, determining which patterns enjoy high separation ranks:

Contiguous (2× 2) pooling supports entangled patterns (e.g. A) at
the expense of coarse ones (e.g. B), as required for natural images

Other pooling schemes lead to different preferences, and this allows
tailoring network to alternative types of data

Pooling geometry controls inductive bias of deep network.
Standard design suits natural images, other possibilities available.
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Experiments
Goal
Demonstrate empirically that different pooling geometries lead to superior
performance in different tasks

Dataset
Synthetic classification benchmark inspired by medical imaging tasks:

32-by-32 binary images, displaying random blobs with missing pixels
Two binary (high/low) labels per image, reflecting symmetry and
morphological closedness
Predicting closedness requires local correlations, symmetry requires
correlations across distances

closedness: low

symmetry: low

closedness: high

symmetry: low

closedness: low

symmetry: high

closedness: high

symmetry: high
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Experiments (cont’)
Evaluated model
Deep network with two (size-4) pooling geometries:

square (standard 2× 2 windows) mirror (reflections pooled together)

Results

0 20 40 60 80 100 120 140

breadth (# of channels in each hidden layer)

60

65

70

75

80

85

90

95

100

a
cc

u
ra

cy
 [

%
]

closedness task

0 20 40 60 80 100 120 140

breadth (# of channels in each hidden layer)

60

65

70

75

80

85

90

95

100

a
cc

u
ra

cy
 [

%
]

symmetry task

square pool - train

square pool - test

mirror pool - train

mirror pool - test

Deep convolutional arithmetic circuit

Standard square pooling superior for task of local nature,
alternative mirror pooling better for symmetry detection
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Experiments (cont’)
Same trends obtained with ReLU activation and max/average pooling
(instead of linear activation and product pooling):

0 20 40 60 80 100 120 140

breadth (# of channels in each hidden layer)

60

65

70

75

80

85

90

95

100

a
cc

u
ra

cy
 [

%
]

closedness task

0 20 40 60 80 100 120 140

breadth (# of channels in each hidden layer)

60

65

70

75

80

85

90

95

100

a
cc

u
ra

cy
 [

%
]

symmetry task

square pool - train

square pool - test

mirror pool - train

mirror pool - test

Deep convolutional rectifier network (average pooling)
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Deep convolutional rectifier network (max pooling)
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Conclusion

Separation rank of function w.r.t. partition of its input measures
strength of correlation modeled between sides of the partition

We analyzed separation ranks of convolutional arithmetic circuits:
Deep networks: with polynomial size separation ranks are exponential
for certain input partitions, polynomial for others
Shallow networks: separation ranks are exponential only if size is
exponential (implies depth efficiency, with insight into benefit of depth)

Deep network’s pooling geometry determines which partitions are
favored in terms of separation rank, thus controls inductive bias:

Standard contiguous pooling favors interleaved partitions, orienting
inductive bias towards statistics of natural images
Other pooling schemes lead to different preferences, and this allows
tailoring network to data that departs from natural imagery
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Future Work

Blend together multiple pooling geometries for super-linear gain in number
of favored input partitions

Legend

–  concat

Geometry A

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

Geometry B Geometry C

output

Geometry A

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

conv+pool

Geometry B Geometry C

output

–  copy

Super-linear gain
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Thank You

Nadav Cohen (HUJI) Inductive Bias through Pooling Geometry NIPS 2016 Tensor Workshop 21 / 21


