
On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization

Nadav Cohen

Institute for Advanced Study

Symposium on the Mathematical Theory of Deep Neural Networks

Princeton Neuroscience Institute

20 March 2018

Nadav Cohen (IAS) Acceleration by Overparameterization Math of NNs, PNI, Mar’18 1 / 35



Collaborators

Sanjeev Arora 

1 2 Elad Hazan 

1 3

1 Princeton University    2 Institute for Advanced Study    3 Google Brain

Nadav Cohen (IAS) Acceleration by Overparameterization Math of NNs, PNI, Mar’18 2 / 35



Prelude

Outline

1 Prelude

2 Theoretical Analysis

3 Experiments

4 Conclusion

Nadav Cohen (IAS) Acceleration by Overparameterization Math of NNs, PNI, Mar’18 3 / 35



Prelude

Deep Learning

Source
NVIDIA (www.slideshare.net/openomics/the-revolution-of-deep-learning)
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Prelude

Why Depth?

Conventional wisdom:

Depth boosts expressive power
The Power of Depth for Feedforward Neural Networks (Eldan & Shamir, 2016)

On the Expressive Power of Deep Neural Networks (Raghu et al., 2017)

On the Ability of Neural Nets to Express Distributions (Lee et al., 2017)

On the Expressive Power of Deep Learning: A Tensor Analysis (C et al., 2016)

But complicates optimization
Exploring Strategies for Training Deep Neural Networks (Larochelle et al., 2009)

Understanding the Difficulty of Training Deep Feedforward Neural Networks (Glorot & Bengio, 2010)

Training Very Deep Networks (Srivastava et al., 2015)

This work:

Depth can accelerate optimization!
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Prelude

Common Approach – Landscape Characterization
Optimization in deep learning typically studied via characterization of
critical points (local min, saddles) in training objective

Deep Learning Without Poor Local Minima (Kawaguchi, 2016)

Identity Matters in Deep Learning (Hardt & Ma, 2016)

No Bad Local Minima: Data Independent Training Error Guarantees... (Soudry & Carmon, 2016)

Spurious Local Minima are Common in Two-Layer ReLU Neural Networks (Safran & Shamir, 2017)

This approach prefers convex objectives – cannot argue in favor of depth

To do so, one must consider dynamics of optimization algorithm
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Prelude

Decoupling Optimization from Expressiveness

Problem:
Expressiveness can interfere with our study – deeper networks may
optimize “faster” per being able to reach lower training error

Resolution:

We focus on models whose expressiveness is oblivious to depth –
linear neural networks

Adding layers amounts to replacing matrix param by product of
matrices – overparameterization
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Prelude

Warm-Up

Training objective for scalar linear regression with `p loss:

L(w) =
∑

(x,y)∈S

1
p (x>w− y)p

Gradient:

∇w =
∑

(x,y)∈S
(x>w− y)p−1x

Gradient descent:

w(t+1) ←[ w(t) − η∇w(t)
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Prelude

Warm-Up (cont’)
Now overparameterize – replace w by vector w1 times scalar ω2:

L(w1, ω2) =
∑

(x,y)∈S

1
p (x>w1ω2 − y)p

Gradients:
∇w1 =

∑
(x,y)∈S

(x>w1ω2 − y)p−1xω2

∇ω2 =
∑

(x,y)∈S
(x>w1ω2 − y)p−1x>w1

Gradient descent:
w1

(t+1) ←[ w1
(t) − η∇w1(t)

ω2
(t+1) ←[ ω2

(t) − η∇ω2(t)
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Prelude

Warm-Up (cont’)
Question:
How does w = w1ω2 behave during gradient descent over w1, ω2?

Observation:
Assuming small learning rate (η � 1) and near-zero init (w1

(0), ω2
(0) ≈ 0):

w(t+1) = w1
(t+1)ω2

(t+1)

←[ (w1
(t) − η∇w1(t))(ω2

(t) − η∇ω2(t))

= . . .

≈ w(t) − ρ(t)∇w(t) −
∑t−1

τ=1
µ(t,τ)∇w(τ)

for suitable ρ(t), µ(t,τ) ∈ R

Overparameterization by single scalar gave
certain adaptive learning rate and momentum
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Theoretical Analysis

Formal Setup

Depth-N linear neural network:
x 7→WNWN−1 · · ·W1x (Wj – weight matrices)

Define the end-to-end weight matrix:

We := WNWN−1 · · ·W1

Given loss L(·) over linear model, we have overparameterized loss:

LN(W1, . . . ,WN) := L(We)

Question:
How does We behave during gradient descent over W1 . . .WN?
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Theoretical Analysis

End-to-End Update Rule

Gradient descent over W1 . . .WN :

W (t+1)
j ←[ W (t)

j − η ∂LN
∂Wj

(W (t)
1 , . . . ,W (t)

N ) ∀j

Theorem

Assuming small learning rate (η � 1) and near-zero init (W (0)
j ≈ 0 ∀j),

We follows the end-to-end update rule:

W (t+1)
e ←[ W (t)

e − η
N∑
j=1

[
W (t)

e (W (t)
e )>

] j−1
N dL

dW (W (t)
e )

[
(W (t)

e )>W (t)
e

]N−j
N

Overparameterization with deep linear net gives closed-
form update rule! No dependence on layer widths!
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Theoretical Analysis

End-to-End Update Rule (cont’)

W (t+1)
e ← [ W (t)

e − η
∑N

j=1

[
W (t)

e (W (t)
e )>

] j−1
N dL

dW (W (t)
e )

[
(W (t)

e )>W (t)
e

] N−j
N

Proof sketch:

Assumption η � 1 implies:
discrete updates ≈ continuous differential equations

Assumption W (0)
j ≈ 0 implies:(

W (0)
j+1
)>W (0)

j+1 ≈W (0)
j
(
W (0)

j
)>

We show that
(
W (t)

j+1
)>W (t)

j+1 = W (t)
j
(
W (t)

j
)> continues ∀t

Left singular spaces of W (t)
j thus coincide with right ones of W (t)

j+1

Products of the form Wj+m · · ·Wj+1Wj then simplify
=⇒ update for end-to-end matrix We can be computed explicitly
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Theoretical Analysis
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Theoretical Analysis

End-to-End Update Rule (cont’)
Question:
Do our assumptions (small learning rate, near-zero init) hold in practice?

Empirical validation:

0 50000 100000 150000 200000 250000

iteration

10-3

10-2

10-1

100

L2
 l
o
ss

2-layer

update rule, N=2

3-layer

update rule, N=3

0 50000 100000 150000 200000 250000

iteration

10-1

100

L4
 l
o
ss
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update rule, N=2

3-layer

update rule, N=3

Analytical update rule indeed complies with deep network optimization
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Theoretical Analysis

End-to-End Update Rule – Interpretation

W (t+1)
e ← [ W (t)

e − η
∑N

j=1

[
W (t)

e (W (t)
e )>

] j−1
N dL

dW (W (t)
e )

[
(W (t)

e )>W (t)
e

] N−j
N

Claim
End-to-end update rule can be written as:

vec
[
W (t+1)

e

]
←[ vec

[
W (t)

e

]
− η · PW (t)

e
vec
[
dL
dW (W (t)

e )
]

where PW (t)
e

is a preconditioning (PSD) matrix with:

Eigendirections: formed by sing vectors of W (t)
e

Eigenvalues: large (small) if sing vectors have high (low) sing values

Since we assume near-zero init (W (0)
e ≈ 0):

Overparameterization induces preconditioning, that
promotes movement along directions already taken!
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Theoretical Analysis

Single Output Case

Claim
In single (scalar) output case, end-to-end update rule can be written as:

W (t+1)
e ←[ W (t)

e − η‖W (t)
e ‖

2− 2
N

2

(
dL
dW (W (t)

e ) + (N−1)PrW (t)
e

{
dL
dW (W (t)

e )
})

where PrW (t)
e
{·} is the projection onto the direction of W (t)

e

Interpretation:

‖W (t)
e ‖

2− 2
N

2 – adaptive learning rate, increases steps away from init

(N−1)PrW (t)
e

{ dL
dW (W (t)

e )
}
– “momentum”, favors azimuth taken so far

 t
eW

gradient is stretched 
along this direction
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Theoretical Analysis

Overparameterization Goes Beyond Regularization

End-to-end update rule (single output case):

W (t+1)
e ← [ W (t)

e − η‖W (t)
e ‖

2− 2
N

2

(
dL
dW (W (t)

e ) + (N−1)PrW (t)
e

{
dL
dW (W (t)

e )
})

Question:
Is this equivalent to gradient descent over some regularized objective?

Theorem
Assuming dL

dW (0) 6= 0, there exists no func (of W ) whose gradient is:

‖W ‖2−
2
N

2

(
dL
dW (W ) + (N−1)PrW

{ dL
dW (W )

})

Effect of overparameterization can’t be attained
through any modification of the objective!
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Theoretical Analysis

Overparameterization Goes Beyond Regularization (con’t)
Proof sketch:

Fundamental theorem for line integrals:∮
Γ∇g = 0 for any closed curve Γ and differentiable func g(·)

Define F (W ) := ‖W ‖2−
2
N

2

(
dL
dW (W ) + (N−1)PrW

{ dL
dW (W )

})
Let e := dL

dW (0)/
∥∥ dL
dW (0)

∥∥, and Γr ,R be a curve as follows:

R e r e r e R e

0

1

,r R

2

,r R

3

,r R

4

,r R

e
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Theoretical Analysis

Overparameterization Goes Beyond Regularization (con’t)
Proof sketch (cont’):

R e r e r e R e

0

1

,r R

2

,r R

3

,r R

4

,r R

e

We compute a lower bound on
∮

Γr,R
F =

∑4
i=1

∫
Γi
r,R

F

Show lower bound is positive for sufficiently small r ,R

F (·) thus contradicts fundamental theorem for line integrals

=⇒ cannot be a gradient!
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Theoretical Analysis

Overparameterization Goes Beyond Regularization (con’t)
Proof sketch (cont’):
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Theoretical Analysis

Overparameterization Goes Beyond Regularization (con’t)
Proof sketch (cont’):
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Theoretical Analysis

Overparameterization Goes Beyond Regularization (con’t)
Proof sketch (cont’):
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Theoretical Analysis

Illustration of Acceleration

Simple training objective (`p regression):

L(w1,w2) = 1
p (w1 − y1)p + 1

p (w2 − y2)p

Gradient descent:
w (t+1)
i ← [ w (t)

i − η(w (t)
i − yi)p−1 i = 1, 2

Change of variables ∆i = wi − yi :

∆(t+1)
i ←[ ∆(t)

i
(
1− η(∆(t)

i )p−2) i = 1, 2

To prevent divergence, learning rate must satisfy:

η <
2

max
{
|∆(0)

1 |, |∆
(0)
2 |
}p−2 ≈︸︷︷︸

w (0)
i ≈0

2
max

{
|y1|, |y2|

}p−2
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Theoretical Analysis

Illustration of Acceleration (cont’)

L(w1,w2) = 1
p (w1 − y1)p + 1

p (w2 − y2)p ∆i = wi − yi

∆(t+1)
i ←[ ∆(t)

i
(
1− η(∆(t)

i )p−2) η < 2/max
{
|y1|, |y2|

}p−2
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Theoretical Analysis

Illustration of Acceleration (cont’)

L(w1,w2) = 1
p (w1 − y1)p + 1

p (w2 − y2)p ∆i = wi − yi

∆(t+1)
i ←[ ∆(t)

i
(
1− η(∆(t)

i )p−2) η < 2/max
{
|y1|, |y2|

}p−2

Suppose problem is ill-conditioned: y1 � y2
2w

1w

       * * * *

1 2 1 2 1 2, , , 0,0w w y y    
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Theoretical Analysis

Illustration of Acceleration (cont’)

L(w1,w2) = 1
p (w1 − y1)p + 1

p (w2 − y2)p ∆i = wi − yi
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Suppose problem is ill-conditioned: y1 � y2
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1w

       * * * *

1 2 1 2 1 2, , , 0,0w w y y    

If p > 2: η � 2
yp−2

2
=⇒ coordinate 2 will converge slowly
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Theoretical Analysis

Illustration of Acceleration (cont’)
2w

1w

       * * * *

1 2 1 2 1 2, , , 0,0w w y y    

With overparameterization (end-to-end update rule):

Learning rate effectively multiplied by (w1 + w2)2− 2
N

As coordinate 1 converges, coordinate 2 accelerates by ≈ y2− 2
N

1

Optimization may begin with small steps to avoid divergence,
increasing step size as safe grounds are reached
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Theoretical Analysis

Illustration of Acceleration (cont’)
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Theoretical Analysis

Illustration of Acceleration (cont’)
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Experiments

`p Regression

Dataset: Scalar regression problem from UCI ML Repository

Models: Linear nets with size-1 hidden layers (no computational overhead)
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Results:

Overparameterization significantly accelerated `p
regression for p > 2 (in line with qualitative analysis)!
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Experiments

Overparameterization vs. Explicit Accelerators
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Implicit acceleration of overparameterization was faster
than explicit acceleration of AdaGrad and AdaDelta!
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Experiments

Overparameterization vs. Explicit Accelerators (cont’)
Overparameterization was slower than Adam, but when applied on top:
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Overparameterization may help not only gradient
descent, but also state-of-the-art algorithms
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Experiments

Going Deeper with Residual Networks
Question:
If depth indeed accelerates, why not go deeper and deeper?

W (t+1)
e ← [ W (t)

e − η‖W (t)
e ‖

2− 2
N

2

(
dL
dW (W (t)

e ) + (N−1)PrW (t)
e

{
dL
dW (W (t)

e )
})

Vanishing gradient problem:
With large N:
small weight init =⇒ We := WN · · ·W1 starts extremely close to 0

=⇒ steps are severely attenuated

Resolution:
Larger weight init (still small enough to prevent We “explosion”)

Specifically: identity init ←→ linear residual networks
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Experiments

Going Deeper with Residual Networks (cont’)
Deep nets with near-zero vs. identity init:
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Identity init eliminated vanishing grad problem
=⇒ linear residual nets can go deeper!
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Experiments

Non-Linear Convolutional Network

TensorFlow ConvNet tutorial for MNIST:1

Architecture:
5× 5 conv, 32 channels, ReLU
2× 2 max pooling
5× 5 conv, 64 channels, ReLU
2× 2 max pooling
7 · 7 · 64→ 512 dense, ReLU
512→ 10 dense

Training:
SGD+momentum, batch size 64
Momentum coeff 0.9, learning rate 0.01 (gradually decays)
Weight init ∼ N (0, 0.1)
Dropout 0.5 after last ReLU

Sanity test:
Overparameterize – add excess matrix to each dense layer

1https://github.com/tensorflow/models/tree/master/tutorials/image/mnist
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Experiments

Non-Linear Convolutional Network (cont’)
Training convergence:
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With +15% in params, overparameterization
accelerated non-linear net by orders-of-magnitude!
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Conclusion

Conclusion

Depth radically changes obj landscape, makes it highly non-convex

Conventional wisdom: this complicates optimization

For linear neural networks (overparameterization), we show:

Depth induces on gradient descent a preconditioning scheme

Preconditioner has closed-form description, and can be seen as certain
combination of adaptive learning rate and “momentum”

The effect cannot be attained via any regularizer

Can lead to significant acceleration, with no change in expressiveness,
and negligible computational overhead

Perspective:
Understanding optimization in deep learning likely requires direct
analysis of specific problems, models and algorithms
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Thank You
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