Expressiveness of Convolutional Networks via Hierarchical Tensor Decompositions

Nadav Cohen

The Hebrew University of Jerusalem

(soon: The Institute for Advanced Study in Princeton)

Workshop on Mathematics of Deep Learning 2017

Technical University of Berlin and Weierstrass Institute

Sources

Deep SimNets

N. Cohen, O. Sharir and A. Shashua Computer Vision and Pattern Recognition (CVPR) 2016

On the Expressive Power of Deep Learning: A Tensor Analysis

N. Cohen, O. Sharir and A. Shashua Conference on Learning Theory (COLT) 2016

Convolutional Rectifier Networks as Generalized Tensor Decompositions

N. Cohen and A. Shashua International Conference on Machine Learning (ICML) 2016

Inductive Bias of Deep Convolutional Networks through Pooling Geometry

N. Cohen and A. Shashua International Conference on Learning Representations (ICLR) 2017

Tensorial Mixture Models

O. Sharir. R. Tamari, N. Cohen and A. Shashua arXiv preprint 2017

Boosting Dilated Convolutional Networks with Mixed Tensor Decompositions

N. Cohen, R. Tamari and A. Shashua arXiv preprint 2017

Deep Learning and Quantum Entanglement:

Fundamental Connections with Implications to Network Design

Y. Levine, D. Yakira, N. Cohen and A. Shashua arXiv preprint 2017

Collaborators

Or Sharir

Ronen Tamari

Amnon Shashua

Yoav Levine

David Yakira

Outline

Reflection: The Mathematics of Deep Learning

2 Convolutional Networks as Hierarchical Tensor Decompositions

Expressiveness of Convolutional Networks

- Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
- Modeling Interactions (Levine/Yakira/C/Shashua@arXiv'17, C/Shashua@ICLR'17)
- Efficiency of Interconnectivity (C/Tamari/Shashua@arXiv'17)

4 Conclusion

Statistical Learning Setup

- $\mathcal X$ instance space (e.g. $\mathbb R^{100\times 100}$ for 100-by-100 grayscale images)
- $\mathcal Y$ label space (e.g. $\mathbb R$ for regression or $[k]:=\{1,\ldots,k\}$ for classification)
- \mathcal{D} distribution over $\mathcal{X} \times \mathcal{Y}$ (unknown)
- $\ell:\mathcal{Y}{ imes}\mathcal{Y}
 ightarrow\mathbb{R}_{\geq0}$ loss func (e.g. $\ell(y,\hat{y})=(y-\hat{y})^2$ for $\mathcal{Y}=\mathbb{R})$

<u>Task</u>

Given training sample $S = \{(X_1, y_1), \ldots, (X_m, y_m)\}$ drawn i.i.d. from \mathcal{D} , return hypothesis (predictor) $h : \mathcal{X} \to \mathcal{Y}$ that minimizes population loss:

$$L_{\mathcal{D}}(h) := \mathbb{E}_{(X,y) \sim \mathcal{D}}[\ell(y, h(X))]$$

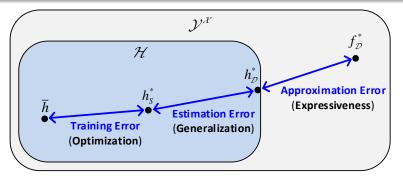
Approach

Predetermine hypotheses space $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$, and return hypothesis $h \in \mathcal{H}$ that minimizes empirical loss:

$$L_{S}(h) := \mathbb{E}_{(X,y)\sim S}[\ell(y,h(X))] = \frac{1}{m} \sum_{i=1}^{m} \ell(y_{i},h(X_{i}))$$

Reflection: The Mathematics of Deep Learning

Three Pillars of Statistical Learning Theory: Expressiveness, Generalization and Optimization



- $f_{\mathcal{D}}^*$ ground truth (argmin_{$f \in \mathcal{Y}^{\mathcal{X}}$} $L_{\mathcal{D}}(f)$)
- $h_{\mathcal{D}}^*$ optimal hypothesis (argmin_{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)
- h_{S}^{*} empirically optimal hypothesis (argmin_{$h \in \mathcal{H}$} $L_{S}(h)$)
- \bar{h} returned hypothesis

Reflection: The Mathematics of Deep Learning

Classical Machine Learning



Optimization

Empirical loss minimization is a convex program:

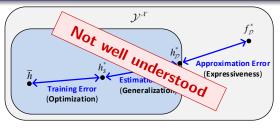
 $ar{h}pprox h_S^*$ (training err pprox 0)

Expressiveness & Generalization

Bias-variance trade-off:

\mathcal{H}	approximation err	estimation err
expands	\searrow	\nearrow
shrinks	\nearrow	\searrow

Deep Learning



Optimization

Empirical loss minimization is a non-convex program:

- h^{*}_S is not unique many hypotheses have low training err
- Stochastic Gradient Descent somehow reaches one of these

Expressiveness & Generalization

Vast difference from classical ML:

- Some low training err hypotheses generalize well, others don't
- W/typical data, solution returned by SGD often generalizes well
- Expanding $\mathcal H$ reduces approximation err, but also estimation err!

Nadav Cohen (Hebrew U. \rightarrow IAS)

Outline

Reflection: The Mathematics of Deep Learning

Convolutional Networks as Hierarchical Tensor Decompositions

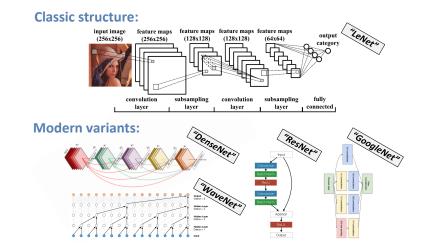
Expressiveness of Convolutional Networks

- Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
- Modeling Interactions (Levine/Yakira/C/Shashua@arXiv'17, C/Shashua@ICLR'17)
- Efficiency of Interconnectivity (C|Tamari|Shashua@arXiv'17)

4 Conclusion

Convolutional Networks

Most successful deep learning arch to date!



Traditionally used for images/video, nowadays for audio and text as well

Nadav Cohen (Hebrew U. \rightarrow IAS)

Tensor Product of L^2 Spaces

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Let \mathbb{R}^{s} be the space of such elements (e.g. \mathbb{R}^{3} for RGB pixels)

Consider:

- $L^2(\mathbb{R}^s)$ space of func over single element
- $L^2((\mathbb{R}^s)^N)$ space of func over N elements

Fact

 $L^{2}((\mathbb{R}^{s})^{N})$ is equal to the tensor product of $L^{2}(\mathbb{R}^{s})$ with itself N times: $L^{2}((\mathbb{R}^{s})^{N}) = L^{2}(\mathbb{R}^{s}) \otimes \cdots \otimes L^{2}(\mathbb{R}^{s})$

N times

Implication

If
$$\{f_d(\mathbf{x})\}_{d=1}^{\infty}$$
 is a basis¹ for $L^2(\mathbb{R}^s)$, the following is a basis for $L^2((\mathbb{R}^s)^N)$:
 $\left\{(\mathbf{x}_1, \dots, \mathbf{x}_N) \mapsto \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)\right\}_{d_1 \dots d_N = 1}^{\infty}$

¹Set of linearly independent func w/dense span

Coefficient Tensor

For practical purposes, restrict $L^2(\mathbb{R}^s)$ basis to a finite set: $f_1(\mathbf{x})...f_M(\mathbf{x})$ We call $f_1(\mathbf{x})...f_M(\mathbf{x})$ descriptors

General func over N elements can now be written as:

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N)=\sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N}\prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

w/func fully determined by the coefficient tensor:

$$\mathcal{A} \in \mathbb{R}^{\overbrace{M \times \cdots \times M}^{N \text{ times}}}$$

Example

- 100-by-100 images (*N* = 10⁴)
- pixels represented by 256 descriptors (M = 256)

Then, func over images correspond to coeff tensors of:

- order 10⁴
- dim 256 in each mode

Decomposing Coefficient Tensor \longrightarrow Convolutional Arithmetic Circuit

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

Coeff tensor A is exponential (in # of elements N)

 \implies directly computing a general func is intractable

Observation

Applying hierarchical decomposition to coeff tensor gives ConvNet w/linear activation and product pooling (Convolutional Arithmetic Circuit)!

 decomposition type
 network structure

 (mode tree, internal ranks etc)
 ←→
 (depth, width, pooling etc)

 decomposition parameters
 ←→
 network weights

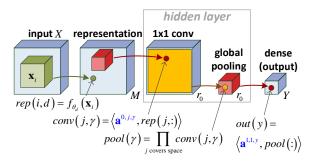
Example 1: CP Decomposition \longrightarrow Shallow Network

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

W/CP decomposition applied to coeff tensor:

$$\mathcal{A} = \sum_{\gamma=1}^{r_0} a_{\gamma}^{\mathbf{1},\mathbf{1},\mathbf{y}} \cdot \mathbf{a}^{0,\mathbf{1},\gamma} \otimes \mathbf{a}^{0,2,\gamma} \otimes \cdots \otimes \mathbf{a}^{0,N,\gamma}$$

func is computed by shallow network (single hidden layer, global pooling):



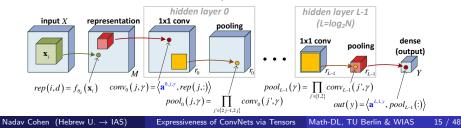
Example 2: HT Decomposition \longrightarrow Deep Network

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

W/Hierarchical Tucker (HT) decomposition applied to coeff tensor:

$$\begin{aligned} \phi^{1,j,\gamma} &= \sum_{\alpha=1}^{r_0} a_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha} \\ &\cdots \\ \phi^{l,j,\gamma} &= \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha} \\ &\cdots \\ \mathcal{A} &= \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{L,1,y} \cdot \phi^{L-1,1,\alpha} \otimes \phi^{L-1,2,\alpha} \end{aligned}$$

func is computed by deep network w/size-2 pooling windows:



Generalization to Other Types of Convolutional Networks

We established equivalence:

hierarchical tensor decompositions \leftrightarrow conv arith circuits (ConvACs)

ConvACs deliver promising empirical results,¹ but other types of ConvNets (e.g. w/ReLU activation and max/ave pooling) are much more common

The equivalence extends to other types of ConvNets if we generalize the notion of tensor product:²

Tensor product: $(\mathcal{A} \otimes \mathcal{B})_{d_1...d_{P+Q}} = \mathcal{A}_{d_1...d_P} \cdot \mathcal{B}_{d_{P+1}...d_{P+Q}}$ Generalized tensor product: $(\mathcal{A} \otimes_g \mathcal{B})_{d_1...d_{P+Q}} := g(\mathcal{A}_{d_1...d_P}, \mathcal{B}_{d_{P+1}...d_{P+Q}})$ (same as \otimes but w/general $g : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ instead of mult)

¹Deep SimNets, CVPR'16 ; Tensorial Mixture Models, arXiv'17 ²Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML'16

Outline

Reflection: The Mathematics of Deep Learning

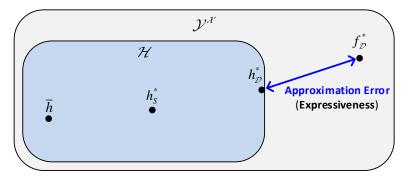
2 Convolutional Networks as Hierarchical Tensor Decompositions

3 Expressiveness of Convolutional Networks

- Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
- Modeling Interactions (Levine/Yakira/C/Shashua@arXiv'17, C/Shashua@ICLR'17)
- Efficiency of Interconnectivity (C|Tamari|Shashua@arXiv'17)

4 Conclusion

Expressiveness



- $f_{\mathcal{D}}^*$ ground truth (argmin_{$f \in \mathcal{Y}^{\mathcal{X}}$} $L_{\mathcal{D}}(f)$)
- $h_{\mathcal{D}}^*$ optimal hypothesis (argmin_{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)
- h_S^* empirically optimal hypothesis (argmin_{$h \in \mathcal{H}$} $L_S(h)$)
- \bar{h} returned hypothesis

Outline

Reflection: The Mathematics of Deep Learning

2 Convolutional Networks as Hierarchical Tensor Decompositions

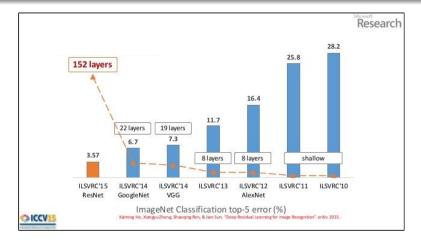
3 Expressiveness of Convolutional Networks

- Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
- Modeling Interactions (Levine/Yakira/C/Shashua@arXiv'17, C/Shashua@ICLR'17)
- Efficiency of Interconnectivity (C|Tamari|Shashua@arXiv'17)

4 Conclusion

Efficiency of Depth

Efficiency of Depth



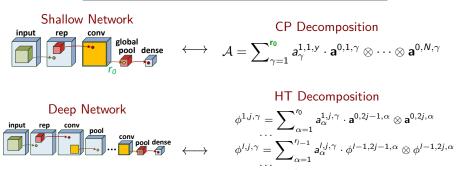
Longstanding conjecture

Efficiency of depth: deep ConvNets realize func that require shallow ConvNets to have exponential size (width)

Nadav Cohen (Hebrew U. \rightarrow IAS) Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS 20 / 48

Tensor Decomposition Viewpoint

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N)=\sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N}\prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$



Efficiency of depth

HT decomposition realizes tensors that require CP decomposition to have exponential rank (r_0 exponential in N)

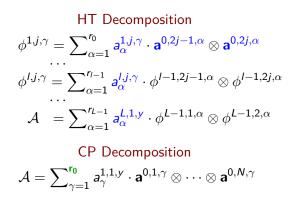
Nadav Cohen (Hebrew U. \rightarrow IAS)

 $\mathcal{A} = \sum_{\alpha} a_{\alpha}^{L,1,y} \cdot \phi^{L-1,1,\alpha} \otimes \phi^{L-1,2,\alpha}$

HT vs. CP Analysis

Theorem

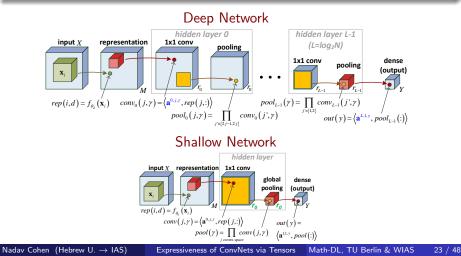
Besides a negligible (zero measure) set, all parameter settings for HT decomposition lead to tensors w/CP-rank exponential in N



HT vs. CP Analysis (cont'd)

Corollary

Randomizing weights of deep ConvAC by a cont distribution leads, w.p. 1, to func that require shallow ConvAC to have exponential # of channels



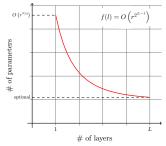
Expressiveness of Convolutional Networks Efficiency of Depth

HT vs. CP Analysis – Generalizations

HT vs. CP analysis may be generalized in various ways, e.g.:

• Comparison between arbitrary depths

Penalty in resources is double-exponential w.r.t. # of layers cut-off



• Adaptation to other types of ConvNets

W/ReLU activation and max pooling, deep nets realize func requiring shallow nets to be exponentially large, but not almost always

Efficiency of depth proven!

24 / 48

Outline

Reflection: The Mathematics of Deep Learning

2 Convolutional Networks as Hierarchical Tensor Decompositions

3 Expressiveness of Convolutional Networks

- Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
- Modeling Interactions (Levine/Yakira/C/Shashua@arXiv'17, C/Shashua@ICLR'17)
- Efficiency of Interconnectivity (C|Tamari|Shashua@arXiv'17)

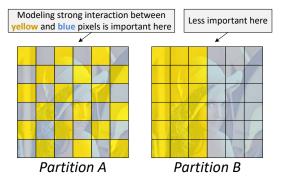
4 Conclusion

Modeling Interactions

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Key property of such func:

interactions modeled between different sets of elements

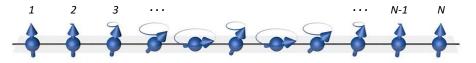


Questions

- What kind of interactions do ConvNets model?
- How do these depend on network structure?

Nadav Cohen (Hebrew U. \rightarrow IAS) Expressiveness of ConvNets via Tensors

Quantum Entanglement



In quantum physics, state of particle is represented as vec in Hilbert space:

$$|\text{particle state}\rangle = \sum_{d=1}^{M} \underbrace{a_d}_{\text{coeff}} \cdot \underbrace{|\psi_d\rangle}_{\text{basis}} \in \mathbf{H}$$

System of N particles is represented as vec in tensor product space:

$$|\text{system state}\rangle = \sum_{d_1...d_N=1}^{M} \underbrace{\mathcal{A}_{d_1...d_N}}_{\text{coeff tensor}} \cdot |\psi_{d_1}\rangle \otimes \cdots \otimes |\psi_{d_N}\rangle \in \underbrace{\mathbf{H} \otimes \cdots \otimes \mathbf{H}}_{N \text{ times}}$$

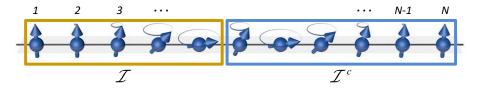
Quantum entanglement measures quantify interactions that a system state models between sets of particles

Expressiveness of Convolutional Networks

Modeling Interactions

Quantum Entanglement (cont'd)

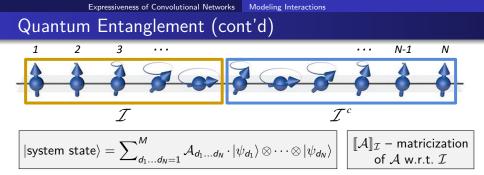
$$|\text{system state}\rangle = \sum\nolimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}\rangle {\otimes} {\cdots} {\otimes} |\psi_{d_N}\rangle$$



Consider partition of the N particles into sets \mathcal{I} and \mathcal{I}^c

 $\llbracket \mathcal{A} \rrbracket_{\mathcal{I}}$ – matricization of coeff tensor \mathcal{A} w.r.t. \mathcal{I} :

- arrangement of ${\cal A}$ as matrix
- \bullet rows/cols correspond to modes indexed by $\mathcal{I}/\mathcal{I}^{c}$



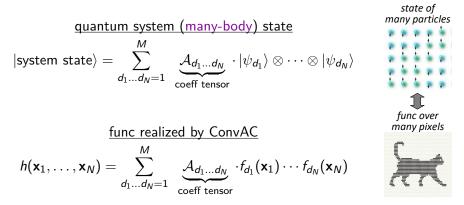
Let
$$oldsymbol{\sigma} = (\sigma_1, \sigma_2, \dots, \sigma_R)$$
 be the singular vals of $\llbracket \mathcal{A}
rbracket_{\mathcal{I}}$

Entanglement measures between particles of \mathcal{I} and of \mathcal{I}^c are based on σ :

- Entanglement Entropy: entropy of $(\sigma_1^2, \ldots, \sigma_R^2) / \| \boldsymbol{\sigma} \|_2^2$
- Geometric Measure: $1 \sigma_1^2 / \| \boldsymbol{\sigma} \|_2^2$
- Schmidt Number: $\|\sigma\|_0 = \operatorname{rank} \llbracket \mathcal{A} \rrbracket_{\mathcal{I}}$

Entanglement with Convolutional Arithmetic Circuits

Structural equivalence:

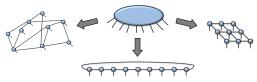


We may quantify interactions ConvAC models between input sets by applying entanglement measures to its coeff tensor!

Nadav Cohen (Hebrew U. \rightarrow IAS) Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS 30 / 48

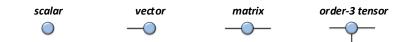
Quantum Tensor Networks

Coeff tensors of quantum many-body states are simulated via: Tensor Networks



Tensor Networks (TNs):

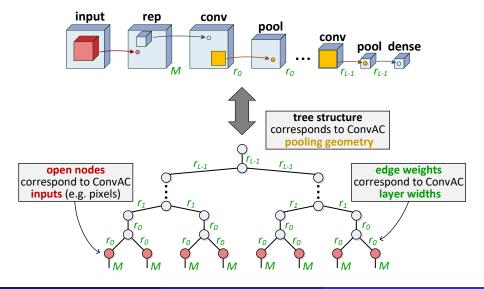
• Graphs in which: vertices \longleftrightarrow tensors edges \longleftrightarrow modes



• Edge (mode) connecting two vertices (tensors) represents contraction

Convolutional Arithmetic Circuits as Tensor Networks

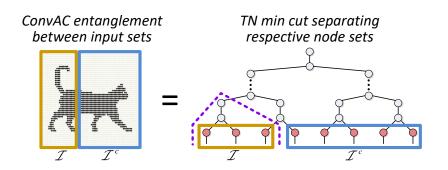
Coeff tensor of ConvAC may be represented via TN:



Entanglement via Minimal Cuts

Theorem

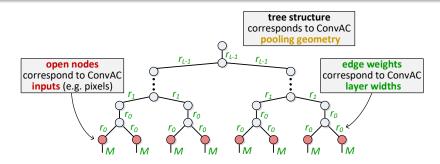
Maximal Schmidt entanglement ConvAC models between input sets I/I^c is equal to min cut in respective TN separating nodes of I/I^c



Controlling Entanglement (Interactions)

Corollary

Controlling entanglement (interactions) modeled by ConvAC is equivalent to controlling min cuts in respective TN



Two sources of control: layer widths, pooling geometry

We may analyze the effect of ConvAC arch on the interactions (entanglement) it can model!

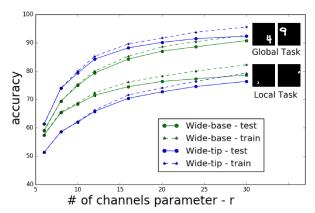
Nadav Cohen (Hebrew U. \rightarrow IAS) Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS 34 / 48

Controlling Interactions – Layer Widths

Claim

Deep (early) layer widths are important for long (short)-range interactions

Experiment



Controlling Interactions – Pooling Geometry

Claim

Input elements pooled together early have stronger interaction

Experiment

archs

results

closedness: low symmetry: low

square pooling

(local interactions)

closedness task

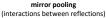
breadth (# of channels in each hidden laye

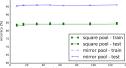
symmetry: low

closedness: low

symmetry: high

closedness: high symmetry: high





breadth (# of channels in each hidden layer)

Nadav Cohen (Hebrew U. \rightarrow IAS)

Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS

36 / 48

Outline

Reflection: The Mathematics of Deep Learning

2 Convolutional Networks as Hierarchical Tensor Decompositions

3 Expressiveness of Convolutional Networks

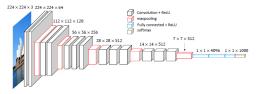
- Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
- Modeling Interactions (Levine/Yakira/C/Shashua@arXiv'17, C/Shashua@ICLR'17)
- Efficiency of Interconnectivity (C/Tamari/Shashua@arXiv'17)

4 Conclusion

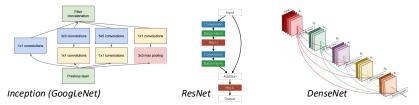
Expressiveness of Convolutional Networks Eff

Efficiency of Interconnectivity

Classic ConvNets have feed-forward (chain) structure:



Modern ConvNets employ elaborate connectivity schemes:



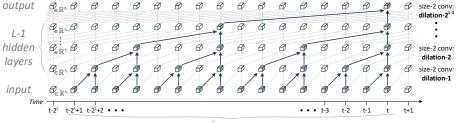
Question

Can such connectivities lead to more efficient representation of func?

Nadav Cohen (Hebrew U. \rightarrow IAS) Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS 38 / 48

Dilated Convolutional Networks

We focus on dilated ConvNets (D-ConvNets) for sequence data:



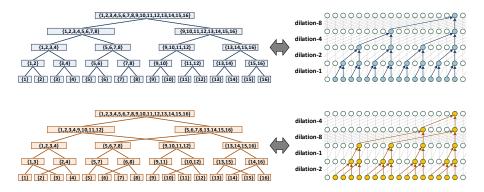
 $N:=2^{L}$ time points

- 1D ConvNets
- No pooling
- Dilated (gapped) conv windows

Underlie Google's WaveNet & ByteNet - state of the art for audio & text!

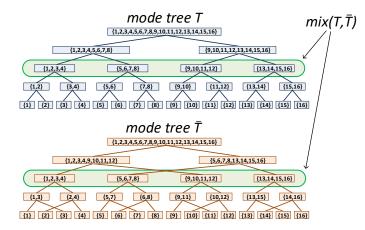
Dilations and Mode Trees

 $W/D\mathchar`-ConvNet,$ mode tree underlying corresponding tensor decomposition determines dilation scheme



Mixed Tensor Decompositions

Let: T, \overline{T} – mode trees ; $mix(T, \overline{T})$ – set of nodes present in both trees



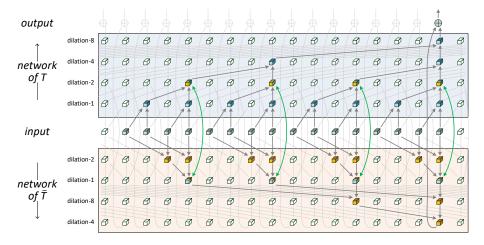
A mixed tensor decomposition blends together T and \overline{T} by running their decompositions in parallel, exchanging tensors in each node of $mix(T, \overline{T})$

41 / 48

Nadav Cohen (Hebrew U. → IAS) Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS

Mixed Dilated Convolutional Networks

Mixed tensor decomposition corresponds to **mixed D-ConvNet**, formed by interconnecting the networks of T and \overline{T} :



Mixture \longrightarrow Expressive Efficiency

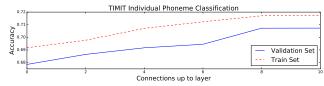
Theorem

Mixed tensor decomposition of T and \overline{T} can generate tensors that require individual decompositions to grow quadratically (in terms of their ranks)

Corollary

Mixed D-ConvNet can realize func that require individual networks to grow quadratically (in terms of layer widths)

Experiment



Interconnectivity can lead to more efficient representation!

Outline

Reflection: The Mathematics of Deep Learning

2 Convolutional Networks as Hierarchical Tensor Decompositions

Expressiveness of Convolutional Networks

- Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
- Modeling Interactions (Levine/Yakira/C/Shashua@arXiv'17, C/Shashua@ICLR'17)
- Efficiency of Interconnectivity (C/Tamari/Shashua@arXiv'17)

4 Conclusion

Conclusion

Conclusion

• Three pillars of statistical learning theory:

Expressiveness Generalization

Optimization

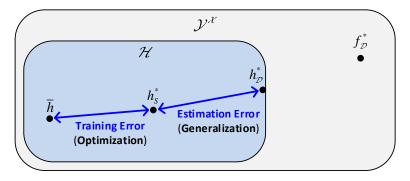
- ${\scriptstyle \bullet}$ Well developed theory for classical ML
- Limited understanding for Deep Learning
- We derive equivalence:

 $\textbf{ConvNets} \longleftrightarrow \textbf{hierarchical tensor decompositions}$

- We use equivalence to analyze expressiveness of ConvNets:
 - Representational efficiency of depth
 - Input interaction (entanglement) modeling
 - Efficiency of interconnectivity schemes
- Results not only explanatory provide new tools for network design

Conclusion

Future Work



- $f_{\mathcal{D}}^*$ ground truth (argmin_{$f \in \mathcal{Y}^{\mathcal{X}}$} $L_{\mathcal{D}}(f)$)
- $h_{\mathcal{D}}^*$ optimal hypothesis (argmin_{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)
- h_{S}^{*} empirically optimal hypothesis (argmin_{$h \in \mathcal{H}$} $L_{S}(h)$)
- \bar{h} returned hypothesis

Reflection: The Mathematics of Deep Learning

2 Convolutional Networks as Hierarchical Tensor Decompositions

Expressiveness of Convolutional Networks

- Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
- Modeling Interactions (Levine/Yakira/C/Shashua@arXiv'17, C/Shashua@ICLR'17)
- Efficiency of Interconnectivity (C/Tamari/Shashua@arXiv'17)

4 Conclusion

Thank You