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Reflection: The Mathematics of Deep Learning

Statistical Learning Setup
X – instance space (e.g. R100×100 for 100-by-100 grayscale images)

Y – label space (e.g. R for regression or [k] := {1, . . . , k} for classification)

D – distribution over X × Y (unknown)

` : Y×Y → R≥0 – loss func (e.g. `(y , ŷ) = (y − ŷ)2 for Y = R)

Task
Given training sample S = {(X1, y1), . . . , (Xm, ym)} drawn i.i.d. from D,
return hypothesis (predictor) h : X → Y that minimizes population loss:

LD(h) := E(X ,y)∼D[`(y , h(X ))]
Approach
Predetermine hypotheses space H ⊂ YX , and return hypothesis h ∈ H
that minimizes empirical loss:

LS(h) := E(X ,y)∼S [`(y , h(X ))] = 1
m
∑m

i=1
`(yi , h(Xi ))

Nadav Cohen (Hebrew U.→ IAS) Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS 5 / 48



Reflection: The Mathematics of Deep Learning

Three Pillars of Statistical Learning Theory:
Expressiveness, Generalization and Optimization

h

*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

f ∗D – ground truth (argminf ∈YX LD(f ))

h∗D – optimal hypothesis (argminh∈H LD(h))

h∗S – empirically optimal hypothesis (argminh∈H LS(h))

h̄ – returned hypothesis
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Reflection: The Mathematics of Deep Learning

Classical Machine Learning

h

*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

Optimization
Empirical loss minimization is a convex program:

h̄ ≈ h∗S ( training err ≈ 0 )

Expressiveness & Generalization
Bias-variance trade-off:

H approximation err estimation err
expands ↘ ↗
shrinks ↗ ↘

Well developed theory
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Reflection: The Mathematics of Deep Learning

Deep Learning

h

*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

Optimization
Empirical loss minimization is a non-convex program:

h∗S is not unique – many hypotheses have low training err
Stochastic Gradient Descent somehow reaches one of these

Expressiveness & Generalization
Vast difference from classical ML:

Some low training err hypotheses generalize well, others don’t
W/typical data, solution returned by SGD often generalizes well
Expanding H reduces approximation err, but also estimation err!

Not well understood
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Convolutional Networks as Hierarchical Tensor Decompositions
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Convolutional Networks as Hierarchical Tensor Decompositions

Convolutional Networks
Most successful deep learning arch to date!

Classic structure:

Modern variants:

Traditionally used for images/video, nowadays for audio and text as well
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Convolutional Networks as Hierarchical Tensor Decompositions

Tensor Product of L2 Spaces
ConvNets realize func over many local elements (e.g. pixels, audio samples)

Let Rs be the space of such elements (e.g. R3 for RGB pixels)

Consider:
L2(Rs) – space of func over single element

L2((Rs)N) – space of func over N elements

Fact
L2((Rs)N) is equal to the tensor product of L2(Rs) with itself N times:

L2((Rs)N) = L2(Rs)⊗ · · · ⊗ L2(Rs)︸ ︷︷ ︸
N timesImplication

If {fd (x)}∞d=1 is a basis1 for L2(Rs), the following is a basis for L2((Rs)N):{
(x1, . . . , xN) 7→

∏N
i=1

fdi (xi )
}∞

d1...dN=1
1Set of linearly independent func w/dense span
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Convolutional Networks as Hierarchical Tensor Decompositions

Coefficient Tensor
For practical purposes, restrict L2(Rs) basis to a finite set: f1(x). . .fM(x)

We call f1(x). . .fM(x) descriptors

General func over N elements can now be written as:

h(x1, . . . , xN) =
∑M

d1...dN=1
Ad1...dN

∏N
i=1

fdi (xi )

w/func fully determined by the coefficient tensor:

A ∈ R

N times︷ ︸︸ ︷
M × · · · ×M

Example
100-by-100 images (N = 104)
pixels represented by 256 descriptors (M = 256)

Then, func over images correspond to coeff tensors of:
order 104

dim 256 in each mode
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Convolutional Networks as Hierarchical Tensor Decompositions

Decomposing Coefficient Tensor
−→ Convolutional Arithmetic Circuit

h(x1, . . . , xN) =
∑M

d1...dN=1
Ad1...dN

∏N
i=1

fdi (xi )

Coeff tensor A is exponential (in # of elements N)
=⇒ directly computing a general func is intractable

Observation
Applying hierarchical decomposition to coeff tensor gives ConvNet w/linear
activation and product pooling (Convolutional Arithmetic Circuit)!

decomposition type ←→ network structure
(mode tree, internal ranks etc) (depth, width, pooling etc)

decomposition parameters ←→ network weights
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Convolutional Networks as Hierarchical Tensor Decompositions

Example 1: CP Decomposition −→ Shallow Network

h(x1, . . . , xN) =
∑M

d1...dN=1
Ad1...dN

∏N
i=1

fdi (xi )

W/CP decomposition applied to coeff tensor:

A =
∑r0

γ=1
a1,1,yγ · a0,1,γ ⊗ a0,2,γ ⊗ · · · ⊗ a0,N,γ

func is computed by shallow network (single hidden layer, global pooling):

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix

M 0r 0r Y

   0, ,, , ,:jconv j rep j  a

   
covers space

,
j

pool conv j  
 

 1,1, , :y

out y

pool



a

X
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Convolutional Networks as Hierarchical Tensor Decompositions

Example 2: HT Decomposition −→ Deep Network

h(x1, . . . , xN) =
∑M

d1...dN=1
Ad1...dN

∏N
i=1

fdi (xi )

W/Hierarchical Tucker (HT) decomposition applied to coeff tensor:
φ1,j,γ =

∑r0

α=1
a1,j,γα · a0,2j−1,α ⊗ a0,2j,α

· · ·
φl,j,γ =

∑rl−1

α=1
al,j,γ
α · φl−1,2j−1,α ⊗ φl−1,2j,α

· · ·
A =

∑rL−1

α=1
aL,1,y
α · φL−1,1,α ⊗ φL−1,2,α

func is computed by deep network w/size-2 pooling windows:

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv
pooling

dense 
(output)

hidden layer 0 hidden layer L-1
(L=log2N)

ix

M 0r 0r 1Lr  1Lr  Y

   0, ,

0 , , ,:jconv j rep j  a

   
 

0 0

' 2 1,2

, ',
j j j

pool j conv j 
 

 

   
 

1 1

' 1,2

',L L

j

pool conv j  



 

   ,1

1

, , :L y

Lout y pool  a

X
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Convolutional Networks as Hierarchical Tensor Decompositions

Generalization to Other Types of Convolutional Networks
We established equivalence:

hierarchical tensor decompositions ←→ conv arith circuits (ConvACs)

ConvACs deliver promising empirical results,1 but other types of ConvNets
(e.g. w/ReLU activation and max/ave pooling) are much more common

The equivalence extends to other types of ConvNets if we generalize the
notion of tensor product:2

Tensor product:
(A⊗ B)d1...dP+Q

= Ad1...dP · BdP+1...dP+Q

Generalized tensor product:
(A⊗g B)d1...dP+Q

:= g(Ad1...dP ,BdP+1...dP+Q )

(same as ⊗ but w/general g : R×R→R instead of mult)

1Deep SimNets, CVPR’16 ; Tensorial Mixture Models, arXiv‘17
2Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML’16
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Expressiveness of Convolutional Networks

Outline

1 Reflection: The Mathematics of Deep Learning

2 Convolutional Networks as Hierarchical Tensor Decompositions

3 Expressiveness of Convolutional Networks
Efficiency of Depth (C|Sharir|Shashua@COLT’16, C|Shashua@ICML’16)
Modeling Interactions (Levine|Yakira|C|Shashua@arXiv’17, C|Shashua@ICLR’17)
Efficiency of Interconnectivity (C|Tamari|Shashua@arXiv’17)

4 Conclusion

Nadav Cohen (Hebrew U.→ IAS) Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS 17 / 48



Expressiveness of Convolutional Networks

Expressiveness

h

*

Sh

*h

*f

Approximation Error 
(Expressiveness)

f ∗D – ground truth (argminf ∈YX LD(f ))

h∗D – optimal hypothesis (argminh∈H LD(h))

h∗S – empirically optimal hypothesis (argminh∈H LS(h))

h̄ – returned hypothesis
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Expressiveness of Convolutional Networks Efficiency of Depth
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Expressiveness of Convolutional Networks Efficiency of Depth

Efficiency of Depth

Longstanding conjecture
Efficiency of depth: deep ConvNets realize func that require shallow
ConvNets to have exponential size (width)
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Expressiveness of Convolutional Networks Efficiency of Depth

Tensor Decomposition Viewpoint

h(x1, . . . , xN) =
∑M

d1...dN=1
Ad1...dN

∏N
i=1

fdi (xi )

Shallow Network
input rep conv

global
pool dense

r0

←→
CP Decomposition

A =
∑r0

γ=1
a1,1,yγ · a0,1,γ ⊗ · · · ⊗ a0,N,γ

Deep Network
input rep conv

pool
conv

pool dense ←→

HT Decomposition
φ1,j,γ =

∑r0

α=1
a1,j,γα · a0,2j−1,α ⊗ a0,2j,α

· · ·
φl,j,γ =

∑rl−1

α=1
al,j,γ
α · φl−1,2j−1,α ⊗ φl−1,2j,α

· · ·
A =

∑rL−1

α=1
aL,1,y
α · φL−1,1,α ⊗ φL−1,2,α

Efficiency of depth
HT decomposition realizes tensors that require CP decomposition to have
exponential rank (r0 exponential in N)
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Expressiveness of Convolutional Networks Efficiency of Depth

HT vs. CP Analysis
Theorem
Besides a negligible (zero measure) set, all parameter settings for HT
decomposition lead to tensors w/CP-rank exponential in N

HT Decomposition
φ1,j,γ =

∑r0
α=1

a1,j,γα · a0,2j−1,α ⊗ a0,2j,α

· · ·
φl ,j,γ =

∑rl−1

α=1
al ,j,γ
α · φl−1,2j−1,α ⊗ φl−1,2j,α

· · ·
A =

∑rL−1

α=1
aL,1,y
α · φL−1,1,α ⊗ φL−1,2,α

CP Decomposition
A =

∑r0
γ=1

a1,1,yγ · a0,1,γ ⊗ · · · ⊗ a0,N,γ
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Expressiveness of Convolutional Networks Efficiency of Depth

HT vs. CP Analysis (cont’d)
Corollary
Randomizing weights of deep ConvAC by a cont distribution leads, w.p. 1,
to func that require shallow ConvAC to have exponential # of channels

Deep Network

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv
pooling

dense 
(output)

hidden layer 0 hidden layer L-1
(L=log2N)

ix

M 0r 0r 1Lr  1Lr  Y

   0, ,

0 , , ,:jconv j rep j  a

   
 

0 0

' 2 1,2

, ',
j j j

pool j conv j 
 

 

   
 

1 1

' 1,2

',L L

j

pool conv j  



 

   ,1

1

, , :L y

Lout y pool  a

X

Shallow Network

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix

M Y

   0, ,, , ,:jconv j rep j  a

   
covers space

,
j

pool conv j  
 

 1,1, , :y

out y

pool



a

X

r0 r0
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Expressiveness of Convolutional Networks Efficiency of Depth

HT vs. CP Analysis – Generalizations
HT vs. CP analysis may be generalized in various ways, e.g.:

Comparison between arbitrary depths
Penalty in resources is double-exponential w.r.t. # of layers cut-off

# of layers

#
of

p
ar
am

et
er
s

optimal

O
(
rN/2

)

L1

f(l) = O
(
r2

L−l
)

Adaptation to other types of ConvNets
W/ReLU activation and max pooling, deep nets realize func requiring
shallow nets to be exponentially large, but not almost always

Efficiency of depth proven!
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Expressiveness of Convolutional Networks Modeling Interactions
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Expressiveness of Convolutional Networks Modeling Interactions

Modeling Interactions
ConvNets realize func over many local elements (e.g. pixels, audio samples)

Key property of such func:
interactions modeled between different sets of elements

Partition BPartition A

Modeling strong interaction between 
yellow and blue pixels is important here

Less important here

Questions
What kind of interactions do ConvNets model?
How do these depend on network structure?
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Expressiveness of Convolutional Networks Modeling Interactions

Quantum Entanglement
1 2 NN-13 . . . . . .

In quantum physics, state of particle is represented as vec in Hilbert space:

|particle state〉 =
∑M

d=1
ad︸︷︷︸
coeff

· |ψd〉︸︷︷︸
basis

∈ H

System of N particles is represented as vec in tensor product space:

|system state〉 =
∑M

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

· |ψd1〉 ⊗ · · · ⊗ |ψdN 〉 ∈ H⊗ · · · ⊗H︸ ︷︷ ︸
N times

Quantum entanglement measures quantify interactions that a system
state models between sets of particles
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Expressiveness of Convolutional Networks Modeling Interactions

Quantum Entanglement (cont’d)

|system state〉 =
∑M

d1...dN=1
Ad1...dN ·|ψd1〉⊗· · ·⊗|ψdN 〉

1 2 NN-13 . . . . . .

c

Consider partition of the N particles into sets I and Ic

JAKI – matricization of coeff tensor A w.r.t. I:
arrangement of A as matrix

rows/cols correspond to modes indexed by I/Ic
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Expressiveness of Convolutional Networks Modeling Interactions

Quantum Entanglement (cont’d)
1 2 NN-13 . . . . . .

c

|system state〉 =
∑M

d1...dN =1
Ad1...dN · |ψd1〉⊗ · · ·⊗ |ψdN 〉

JAKI – matricization
of A w.r.t. I

Let σ = (σ1, σ2, . . . , σR) be the singular vals of JAKI

Entanglement measures between particles of I and of Ic are based on σ:

Entanglement Entropy: entropy of (σ21, . . . , σ2R)/ ‖σ‖22

Geometric Measure: 1− σ21/ ‖σ‖
2
2

Schmidt Number: ‖σ‖0 = rankJAKI
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Expressiveness of Convolutional Networks Modeling Interactions

Entanglement with Convolutional Arithmetic Circuits
Structural equivalence:

quantum system (many-body) state

|system state〉 =
M∑

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

· |ψd1〉 ⊗ · · · ⊗ |ψdN 〉

func realized by ConvAC

h(x1, . . . , xN) =
M∑

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

·fd1(x1) · · · fdN (xN)

state of 
many particles

func over 
many pixels

We may quantify interactions ConvAC models between input
sets by applying entanglement measures to its coeff tensor!
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Expressiveness of Convolutional Networks Modeling Interactions

Quantum Tensor Networks
Coeff tensors of quantum many-body states are simulated via:

Tensor Networks

Tensor Networks (TNs):

Graphs in which: vertices ←→ tensors edges ←→ modes
scalar vector matrix order-3 tensor

Edge (mode) connecting two vertices (tensors) represents contraction
inner-product 

between vectors
matrix 

multiplication edges weighted by 
mode dimensions
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Expressiveness of Convolutional Networks Modeling Interactions

Convolutional Arithmetic Circuits as Tensor Networks
Coeff tensor of ConvAC may be represented via TN:

input rep conv
pool

conv
pool dense

M r0 r0 rL-1 rL-1

M M M M M M M M

r0 r0 r0 r0 r0 r0 r0 r0

r0 r0r0r0

r1 r1 r1 r1

rL-1 rL-1rL-1open nodes 
correspond to ConvAC 

inputs (e.g. pixels)

edge weights 
correspond to ConvAC

 layer widths

tree structure
corresponds to ConvAC

 pooling geometry
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Expressiveness of Convolutional Networks Modeling Interactions

Entanglement via Minimal Cuts

Theorem
Maximal Schmidt entanglement ConvAC models between input sets I/Ic

is equal to min cut in respective TN separating nodes of I/Ic

cc

=

ConvAC entanglement 
between input sets

TN min cut separating 
respective node sets
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Expressiveness of Convolutional Networks Modeling Interactions

Controlling Entanglement (Interactions)
Corollary
Controlling entanglement (interactions) modeled by ConvAC is equivalent
to controlling min cuts in respective TN

M M M M M M M M

r0 r0 r0 r0 r0 r0 r0 r0

r0 r0r0r0

r1 r1 r1 r1

rL-1 rL-1rL-1open nodes 
correspond to ConvAC 

inputs (e.g. pixels)

edge weights 
correspond to ConvAC

 layer widths

tree structure
corresponds to ConvAC

 pooling geometry

Two sources of control: layer widths, pooling geometry

We may analyze the effect of ConvAC arch on
the interactions (entanglement) it can model!
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Expressiveness of Convolutional Networks Modeling Interactions

Controlling Interactions – Layer Widths

Claim
Deep (early) layer widths are important for long (short)-range interactions

Experiment
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Expressiveness of Convolutional Networks Modeling Interactions

Controlling Interactions – Pooling Geometry
Claim
Input elements pooled together early have stronger interaction

Experiment

closedness: low

symmetry: low

closedness: high

symmetry: low

closedness: low

symmetry: high

closedness: high

symmetry: high

square pooling
(local interactions)

mirror pooling
(interactions between reflections)

closedness task symmetry task
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Expressiveness of Convolutional Networks Efficiency of Interconnectivity
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Expressiveness of Convolutional Networks Efficiency of Interconnectivity

Efficiency of Interconnectivity
Classic ConvNets have feed-forward (chain) structure:

Modern ConvNets employ elaborate connectivity schemes:

DenseNetInception (GoogLeNet) ResNet

Question
Can such connectivities lead to more efficient representation of func?
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Expressiveness of Convolutional Networks Efficiency of Interconnectivity

Dilated Convolutional Networks
We focus on dilated ConvNets (D-ConvNets) for sequence data:

size-2 conv:
dilation-1

size-2 conv:
dilation-2

size-2 conv:
dilation-2L-1

Time
t-2L+1 t+1

L-1 
hidden 
layers

N:=2L time points

input

output

0r

1r

2r

1Lr 

Lr

tt-1t-2t-3t-2L+2t-2L

1D ConvNets

No pooling

Dilated (gapped) conv windows

Underlie Google’s WaveNet & ByteNet – state of the art for audio & text!
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Expressiveness of Convolutional Networks Efficiency of Interconnectivity

Dilations and Mode Trees

W/D-ConvNet, mode tree underlying corresponding tensor decomposition
determines dilation scheme

dilation-1

dilation-2

dilation-4

dilation-8

dilation-1

dilation-2

dilation-4

dilation-8

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,2} {3,4} {5,6} {15,16}{7,8} {9,10} {11,12} {13,14}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,3} {2,4} {5,7} {14,16}{6,8} {9,11} {10,12} {13,15}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,9,10,11,12} {5,6,7,8,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

Nadav Cohen (Hebrew U.→ IAS) Expressiveness of ConvNets via Tensors Math-DL, TU Berlin & WIAS 40 / 48



Expressiveness of Convolutional Networks Efficiency of Interconnectivity

Mixed Tensor Decompositions
Let: T , T̄ – mode trees ; mix(T , T̄ ) – set of nodes present in both trees

mix(T,T)mode tree T

mode tree T

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,2} {3,4} {5,6} {15,16}{7,8} {9,10} {11,12} {13,14}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,3} {2,4} {5,7} {14,16}{6,8} {9,11} {10,12} {13,15}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,9,10,11,12} {5,6,7,8,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

A mixed tensor decomposition blends together T and T̄ by running their
decompositions in parallel, exchanging tensors in each node of mix(T , T̄ )
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Expressiveness of Convolutional Networks Efficiency of Interconnectivity

Mixed Dilated Convolutional Networks
Mixed tensor decomposition corresponds to mixed D-ConvNet, formed
by interconnecting the networks of T and T̄ :

network
of T

network
of T

dilation-1

dilation-2

dilation-8

input

dilation-4

dilation-1

dilation-2

dilation-8

dilation-4

output
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Expressiveness of Convolutional Networks Efficiency of Interconnectivity

Mixture −→ Expressive Efficiency
Theorem
Mixed tensor decomposition of T and T̄ can generate tensors that require
individual decompositions to grow quadratically (in terms of their ranks)

Corollary
Mixed D-ConvNet can realize func that require individual networks to grow
quadratically (in terms of layer widths)

Experiment

0 2 4 6 8 10

Connections up to layer

0.68

0.69

0.70

0.71

0.72

A
cc

u
ra

cy

TIMIT Individual Phoneme Classification

Validation Set

Train Set

Interconnectivity can lead to more efficient representation!
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Conclusion

Conclusion
Three pillars of statistical learning theory:

Expressiveness Generalization Optimization
Well developed theory for classical ML

Limited understanding for Deep Learning

We derive equivalence:
ConvNets ←→ hierarchical tensor decompositions

We use equivalence to analyze expressiveness of ConvNets:
Representational efficiency of depth

Input interaction (entanglement) modeling

Efficiency of interconnectivity schemes

Results not only explanatory – provide new tools for network design
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Conclusion

Future Work

h

*

Sh

*h

*f

Estimation Error 
(Generalization)Training Error 

(Optimization)

f ∗D – ground truth (argminf ∈YX LD(f ))

h∗D – optimal hypothesis (argminh∈H LD(h))

h∗S – empirically optimal hypothesis (argminh∈H LS(h))

h̄ – returned hypothesis
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Thank You
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