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Reinforcement Learning (RL)

Goal
Design agent that steers an environment to maximize a reward

Environment

Applications
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Learning via Trial & Error

Learning an agent typically entails trial & error in environment

Computer [ Autonomous Medical Manufacturing
gaming driving treatment optimization
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Offline RL

Goal

Learn an agent without trial & error in environment

reinforcement learning offline reinforcement learning
train for
, many epochs

deploy learned policy in new scenarios

big dataset from
past interactions

this is done
many times
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Conventional Offline RL Methods

Designed for Markov Decision Process (MDP) environments

MDP environment

Conventional offline RL methods

Value-based methods
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MDP environment is fully observable:
its observations reveal its full state

Q(s,a) = r(s,a) + ymax O(s", a)

Policy-based methods

Vod(mg) =E Z Vo log mo(as|se) R(, 1)

t=0

Challenge: many real-world environments are not fully observable

Autonomous
driving
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An Appeal to Supervised Learning

In supervised learning:
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Overparameterized neural networks (NNs) trained by gradient descent (GD) led to a breakthrough

1: automobile 2: bird 7: horse

4: deer 7: horse 7: horse
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9: truck 9: truck 3: cat
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CHALLENGE

Breakthrough results

GD training

Q: Can a similar approach be taken in offline RL?
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An Approach to Offline RL Inspired by Supervised Learning

Step 1 Learn Environment Model

Overparameterized NN trained by GD
over pre-recorded data

Time Action

Observation
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Q: Can this approach work well
enough in critical environments?

Medical
treatment

Step 2 Learn Agent

Overparameterized NN trained by GD
over learned environment model

Learned
environment
model

Overparam
NN

t

i Learned

GD training




Three Pillars of Statistical Learning: 8/18

Expressiveness, Generalization and Optimization
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Three Pillars in Supervised Learning
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Various theoretical guarantees:
Expressiveness Generalization
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Three Pillars in Offline RL
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Step 1 Learn Environment Model
Time | Action | Observation
t a; 0,
t+1 ti1 Ott1
t+2 Ot Ot+1

Pre-recorded data

Learned
environment model

.

Significant challenges:
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Overparam

Step 2 Learn Agent

NN

GD training e 4 v

Expressiveness
Learned —S
environment mﬁesﬁ . .\
model Generalization
h:(rain.
$Optimization
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. & J
@ Learned
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o Expressiveness: capacity of NN arch to reach low test error is highly obscured by dynamics

o Generalization: test distribution can vastly differ from train (distribution shift)

o Optimization: train loss is extremely complex (GD faces instability, vanishing gradients, etc.)



Three Pillars in Offline RL (cont.)

Nascent theory gives positive indications:

On the Implicit Bias of Gradient Descent for
Temporal Extrapolation

Cohen-Karlik + Ben David + C + Globerson
AISTATS 2022

Implicit Bias of Policy Gradient in Linear Quadratic
Control: Extrapolation to Unseen Initial States

Razin* + Alexander* + Cohen-Karlik + Giryes + Globerson + C
ICML 2024

The Implicit Bias of Structured State Space Models
Can Be Poisoned with Clean Labels

Slutzky* + Alexander* + Razin + C
Under Review 2025
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Learning Low Dimensional State Spaces with
Overparameterized Recurrent Neural Nets

Cohen-Karlik + Menuhin-Gruman + Giryes + C + Globerson
ICLR 2023

Provable Benefits of Complex Parameterizations
for Structured State Space Models

Ran-Milo + Lumbroso + Cohen-Karlik + Giryes + Globerson + C
NeurlPS 2024

Implicit Bias of Neural Networks for Control:
A Tendency for Safety (tentative)

Slutzky + Alexander + Nagel + C
Work in Progress 2025



Offline RL in the Wild?

-

\
Step 1 Learn Environment Model
Time Action | Observation
t a; 0
t+1 Qi1 Ot+1
t+2 Qi1 Ot+1
Pre-recorded data
Learned
environment model
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Step 2 Learn Agent
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Ove:\rl)lfllram environment
model
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v Hhe wild

Q: Can this approach work well enough in critical environments?

Medical
treatment
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Case Study |: Medical Treatment

Machine Learning for Mechanical Ventilation Control

Daniel Suo*'!, Naman Agarwal’, Wenhan Xia*!, Xinyi Chen"!, Udaya Ghai*!, Alexander Yu",
Paula Gradu®, Karan Singh'!, Cyril Zhang'!, Edgar Minasyan*!, Julienne LaChance’, Tom
Zajdel!, Manuel Schottdorf!, Daniel Cohen!, Elad Hazan"'

Abstract ventilation, a form of assist-control ventilation, evi-
Mechanical ventilation is one of the most widely dence suggests that a combination of high peak pres-
used therapies in the 10U, However, despite sure and high tidal volune can lead to tissue injury in

Step 1 Learn Environment Model

Use pre-recorded data for learning an NN
lungs model
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Step 2 Learn Agent

Use learned lungs model for learning an NN
mechanical ventilator controller

pressure (cmH20)

—— ours
best PID
best P
best |
- target

Critical environment? g\// In the wild? x

/ \ time (secs)
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Case Study Il: Manufacturing Optimization
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Step 1 Learn Environment Model

Use pre-recorded data for learning an NN
plant model
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Critical environment? &,4/
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4 )
Step 2 Learn Agent
Use learned plant model for learning an NN
controller
a Iy At
\ /

In the wild? @
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Case Study Il: Manufacturing Optimization (cont.)

70+ Applications

30+ Process Plants

6+ Years of Model Engagement

15-309% Reduced Natural Gas Usage

1-39% Yield Improvement
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Conclusion

In critical applications, trial & error is prohibitively costly/dangerous » RL must be offline
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Supervised learning success of overparameterized NNs trained by GD inspires offline RL approach:

4 N
Step 1 Learn Environment Model
Time Action | Observation
t a; 0
t+1 Qi1 Ot+1
t+2 Qi1 Ot+1
Overparam NN Pre-recorded data
Learned
\ environment modelj

Nascent theory supports the approach

&

Step 2 Learn Agent

Overparam
NN

GD training

Learned

model
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@B | carned
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Approach successfully demonstrated in critical application in the wild!



Perspective

Practical progress in Al is currently driven by trial & error

¢\ B o

Less suitable for critical applications

Medical
treatment
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Thank You!
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