Offline Reinforcement Learning in the Wild

Nadav Cohen

Tel Aviv University & Imubit

Israel Machine Vision Conference (IMVC) 2025

Reinforcement Learning (RL)

Goal

Design agent that steers an environment to maximize a reward

Applications

Computer gaming

Playing Go

Autonomous driving

Medical treatment

Manufacturing optimization

Learning via Trial & Error

Learning an agent typically entails trial & error in environment

Feasible in some applications; prohibitively costly/dangerous in others

Computer gaming

Playing Go

Autonomous driving

Medical treatment

Manufacturing optimization

Offline RL

<u>Goal</u>

Learn an agent without trial & error in environment

Conventional Offline RL Methods

Designed for Markov Decision Process (MDP) environments

MDP environment

MDP environment is **fully observable**: its observations reveal its full state

Conventional offline RL methods

Value-based methods

		A ₁	A ₂		A _M
s	1	Q(S ₁ , A ₁)	Q(S ₁ , A ₂)		Q(S ₁ , A _M)
s	2	Q(S ₂ , A ₁)	Q(S ₂ , A ₂)		Q(S ₂ , A _M)
:				ν.	:
S	N	Q(S _N , A ₁)	Q(S _N , A ₂)		Q(S _N , A _M)

$$Q(s, a) = r(s, a) + \gamma \max_{a} Q(s', a)$$

Policy-based methods

$$abla_{ heta} J(\pi_{ heta}) = \mathbb{E}\left[\sum_{t=0}^{T}
abla_{ heta} \log \pi_{ heta}(a_{t}|s_{t}) \hat{R}(au, t)
ight]$$

Challenge: many real-world environments are not fully observable

Autonomous driving

Medical treatment

Manufacturing optimization

An Appeal to Supervised Learning

In supervised learning:

Overparameterized neural networks (NNs) trained by gradient descent (GD) led to a breakthrough

Breakthrough results

Q: Can a similar approach be taken in offline RL?

An Approach to Offline RL Inspired by Supervised Learning

Step 1 Learn Environment Model

Overparameterized NN trained by GD over pre-recorded data

Time	Action	Observation
t	a_t	o_t
t+1	a _{t+1}	O _{t+1}
t+2	a_{t+1}	O _{t+1}
•••	•••	•••

Pre-recorded data

Learned environment model

Q: Can this approach work well enough in critical environments?

Manufacturing optimization

Three Pillars of Statistical Learning: Expressiveness, Generalization and Optimization

 f_{test}^* – optimal function (minimizer of test error over \mathcal{F})

 h_{test}^* – optimal hypothesis (minimizer of test error over \mathcal{H})

 h_{train}^* - empirically optimal hypothesis (minimizer of train error over \mathcal{H})

 $\hat{h}_{ ext{train}}$ – returned hypotheiss

Three Pillars in Supervised Learning

Various theoretical guarantees:

Expressiveness

[Telgarsky 15']

[Eldan and Shamir 15']

[Cohen et al. 16']

[Raghu et al. '16]

[Levine el al. 17']

[Razin et al. 22']

Generalization

[Lampinen and Ganguli 19']

[Arora et al. 19']

[Advani and Saxe 20']

[Chizat and Bach 20']

[Razin and Cohen 20']

[Razin et al. 21]

Optimization

[Saxe et al. 14']

[Bartlett el al. 18']

[Arora et al. 18']

[Arora et al. 19']

[Ji and Telgarsky 20']

[Elkabetz and Cohen 21']

Three Pillars in Offline RL

Significant challenges:

- Expressiveness: capacity of NN arch to reach low test error is highly obscured by dynamics
- Generalization: test distribution can vastly differ from train (distribution shift)
- \circ Optimization: train loss is extremely complex (GD faces instability, vanishing gradients, etc.)

Three Pillars in Offline RL (cont.)

Nascent theory gives positive indications:

On the Implicit Bias of Gradient Descent for Temporal Extrapolation

Cohen-Karlik + Ben David + C + Globerson AISTATS 2022

Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States

Razin* + Alexander* + Cohen-Karlik + Giryes + Globerson + C

The Implicit Bias of Structured State Space Models
Can Be Poisoned with Clean Labels

Slutzky* + Alexander* + Razin + **C**Under Review 2025

Learning Low Dimensional State Spaces with Overparameterized Recurrent Neural Nets

Cohen-Karlik + Menuhin-Gruman + Giryes + C + Globerson ICLR 2023

Provable Benefits of Complex Parameterizations for Structured State Space Models

Ran-Milo + Lumbroso + Cohen-Karlik + Giryes + Globerson + C NeurIPS 2024

Implicit Bias of Neural Networks for Control: A Tendency for Safety (tentative)

Slutzky + Alexander + Nagel + C Work in Progress 2025

Offline RL in the Wild?

in the wild

Q: Can this approach work well enough in critical environments?

Medical treatment

Manufacturing optimization

Case Study I: Medical Treatment

Machine Learning for Mechanical Ventilation Control

Daniel Suo*[†], Naman Agarwal*, Wenhan Xia*[†], Xinyi Chen*[†], Udaya Ghai*[†], Alexander Yu*, Paula Gradu*, Karan Singh*[†], Cyril Zhang*[†], Edgar Minasyan*[†], Julienne LaChance[†], Tom Zajdel[†], Manuel Schottdorf[†], Daniel Cohen[†], Elad Hazan*[†]

Abstract

Mechanical ventilation is one of the most widely used therapies in the ICU. However, despite ventilation, a form of assist-control ventilation, evidence suggests that a combination of high peak pressure and high tidal volume can lead to tissue injury in

Step 1 Learn Environment Model

Use pre-recorded data for learning an NN lungs model

Step 2 Learn Agent

Use learned lungs model for learning an NN mechanical ventilator controller

Critical environment?

In the wild?

Case Study II: Manufacturing Optimization

Step 1 Learn Environment Model

Use pre-recorded data for learning an NN plant model

Step 2 Learn Agent

Use learned plant model for learning an NN controller

Critical environment?

In the wild?

Case Study II: Manufacturing Optimization (cont.)

70+ Applications

30+ Process Plants

6+ Years of Model Engagement

15-30% Reduced Natural Gas Usage

Yield Improvement

Conclusion

In critical applications, trial & error is prohibitively costly/dangerous RL must be offline

Supervised learning success of overparameterized NNs trained by GD inspires offline RL approach:

Nascent theory supports the approach

Approach successfully demonstrated in critical application in the wild!

Perspective

Practical progress in Al is currently driven by trial & error

Less suitable for critical applications

For AI to proliferate in critical applications, theory may be necessary

Thank You!

Theoretical research supported by:

ERC Starting Grant (101164614); Apple; Google; Meta; Yandex; ISF Grant (1780/21); Blavatnik Foundation; Adelis Foundation; Tel Aviv University Center for Al and Data Science; and Amnon and Anat Shashua