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Converses With Humans
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Practice Needs Theory in Deep Learning

Drives Cars
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Practice Needs Theory in Deep Learning

Controls Manufacturing Plants
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Practice Needs Theory in Deep Learning

But Not Well Understood
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Practice Needs Theory in Deep Learning

Susceptible to Adversarial Attacks
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Practice Needs Theory in Deep Learning

Exhibits Undesired Biases
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Leaks Private Information
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Practice Needs Theory in Deep Learning

Lacks Interpretability
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Practice Needs Theory in Deep Learning

Theory May Help Alleviate These Shortcomings
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Fundamental Qs: Expressiveness, Optimization & Generalization

Statistical Learning Setup

X — instance space (e.g. R100×100 for 100-by-100 grayscale images)

Y — label space (e.g. R for regression or {1, . . . , k} for classification)

D — distribution over X × Y (unknown)

` : Y×Y → R≥0 — loss func (e.g. `(y , ŷ) = (y − ŷ)2 for Y = R)

Task
Given training set S = {(Xi , yi )}mi=1 drawn i.i.d. from D, return hypothesis
(predictor) h : X → Y that minimizes population loss:

LD(h) := E(X ,y)∼D[`(y , h(X ))]
Approach
Predetermine hypotheses space H ⊂ YX , and return hypothesis h ∈ H
that minimizes empirical loss:

LS(h) := 1
m

∑m
i=1

`(yi , h(Xi ))
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Fundamental Qs: Expressiveness, Optimization & Generalization

Three Pillars of Statistical Learning Theory:
Expressiveness, Generalization and Optimization

h
*

Sh

*h

*f

(all functions)

(hypotheses space)

f ∗D — ground truth (minimizer of population loss over YX )

h∗D — optimal hypothesis (minimizer of population loss over H)

h∗S — empirically optimal hypothesis (minimizer of empirical loss over H)

h̄ — returned hypothesis
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Fundamental Qs: Expressiveness, Optimization & Generalization

Classical Machine Learning

h
*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

(all functions)

(hypotheses space)

Optimization
Empirical loss minimization is a convex program:

h̄ ≈ h∗S ( training err ≈ 0 )

Expressiveness & Generalization
Bias-variance trade-off:

H approximation err estimation err
expands ↘ ↗
shrinks ↗ ↘

Well developed theory
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Fundamental Qs: Expressiveness, Optimization & Generalization

Deep Learning

h
*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

(all functions)

(hypotheses space)

Optimization
Empirical loss minimization is a non-convex program:

h∗S is not unique — many hypotheses have low training err
Gradient descent (GD) somehow reaches one of these

Expressiveness & Generalization
Vast difference from classical ML:

Some low training err hypotheses generalize well, others don’t
W/typical data, solution returned by GD often generalizes well
Expanding H reduces approximation err, but also estimation err!

Not well understood
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Outline

1 Practice Needs Theory in Deep Learning

2 Fundamental Questions: Expressiveness, Optimization & Generalization

3 Examples of Theories with Practical Implications
Expressiveness via Tensor Analysis
Optimization & Generalization via Dynamical Analysis

4 Conclusion

Nadav Cohen (TAU & Imubit) Practical Implications of Theoretical DL IMVC 2020 20 / 39



Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Sources
Deep SimNets

C + Sharir + Shashua
Computer Vision and Pattern Recognition (CVPR) 2016

On the Expressive Power of Deep Learning: A Tensor Analysis
C + Sharir + Shashua
Conference on Learning Theory (COLT) 2016

Convolutional Rectifier Networks as Generalized Tensor Decompositions
C + Shashua
International Conference on Machine Learning (ICML) 2016

Inductive Bias of Deep Convolutional Networks through Pooling Geometry
C + Shashua
International Conference on Learning Representations (ICLR) 2017

Boosting Dilated Convolutional Networks with Mixed Tensor Decompositions
C + Tamari + Shashua
International Conference on Learning Representations (ICLR) 2018

Deep Learning and Quantum Entanglement:
Fundamental Connections with Implications to Network Design

Levine + Yakira + C + Shashua
International Conference on Learning Representations (ICLR) 2018

Bridging Many-Body Quantum Physics and Deep Learning via Tensor Networks
Levine + Sharir + C + Shashua
Physical Review Letters (PRL) 2019
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Collaborators

Amnon ShashuaOr Sharir

Ronen Tamari

Yoav Levine

David Yakira
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Expressiveness

h
*

Sh

*h

*f

Approximation Error 
(Expressiveness)

(all functions)

(hypotheses space)

f ∗D — ground truth

h∗D — optimal hypothesis

h∗S — empirically optimal hypothesis

h̄ — returned hypothesis
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Tensor Analysis for Convolutional Neural Networks

We derived an equivalence:
Convolutional Neural Networks (CNN) Hierarchical Tensor Factorizations (HTF)

input conv
pool

conv
pool

dense 
(output)

HTF are widely used in Applied Math and Quantum Physics

We adopted tools from these domains to analyze expressiveness of CNN
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Layer Widths

Currently no principle for choosing widths (# of channels) of CNN layers

layer widths

Theorem
Deep (early) layer widths needed to express long (short)-range correlations

Experiment
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Pooling Geometry

CNN typically employ square conv/pool windows

Recently, dilated windows have also become popular

Currently no principle for choosing window geometries
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Pooling Geometry (cont’d)
Theorem
Input elements pooled together early have stronger correlation

Experiment

closedness: low

symmetry: low

closedness: high

symmetry: low

closedness: low

symmetry: high

closedness: high

symmetry: high

square pooling
(local interactions)

mirror pooling
(interactions between reflections)

closedness task symmetry task
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Sources
On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization

Arora + C + Hazan (alphabetical order)
International Conference on Machine Learning (ICML) 2018

A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Arora + C + Golowich + Hu (alphabetical order)
International Conference on Learning Representations (ICLR) 2019

Implicit Regularization in Deep Matrix Factorization
Arora + C + Hu + Luo (alphabetical order)
Conference on Neural Information Processing Systems (NeurIPS) 2019

Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Razin + C
Conference on Neural Information Processing Systems (NeurIPS) 2020
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Optimization & Generalization

h

*

Sh

*h

*f

Estimation Error 
(Generalization)Training Error 

(Optimization)

(all functions)

(hypotheses space)

f ∗D — ground truth

h∗D — optimal hypothesis

h∗S — empirically optimal hypothesis

h̄ — returned hypothesis
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Dynamical Analysis for Linear Neural Networks

Linear Neural Networks (LNN) are neural networks with no activation

W1 W2 WNx y = WN • • • W2W1 x

Expressiveness of LNN is trivial, but optimization & generalization are not!

We study them by analyzing the dynamics (trajectories) of GD
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Result: Depth Can Accelerate Optimization

Theorem
GD over LNN can converge arbitrarily faster than GD over linear model

Experiment

Depth can speed-up GD,
even without any gain in
expressiveness, and despite
introducing non-convexity!

Practical Application

“...we found that using a deep linear network 

is dramatically superior to a single-strided 

one. This is consistent with recent findings in 

theoretical deep-learning...”
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GD over LNN finds solutions with sparse spectrum (low rank)

�
Leads to generalization for matrix completion
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Conclusion

Recap

Theory in deep learning may lead to better practice

Fundamental questions:
Expressiveness Optimization Generalization

Examples of theories with practical implications:

Expressiveness via tensor analysis
=⇒ guidelines for designing CNN per required input correlations

Optimization & generalization via dynamical analysis
=⇒ acceleration and low rank solutions via linear neural networks

↑
(cf. Bell-Kligler, Shocher & Irani (2019); Jing, Zbontar & LeCun (2020))
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