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Practice Needs Theory in Deep Learning

Deep Learning

EVERY INDUSTRY WANTS DEEP LEARNING

Cloud Service Provider Medicine Media & Entertainment Security & Defense Autonomous Machines

> Image/Video classification > Cancer cell detection > Video captioning > Face recognition > Pedestrian detection
> Speech recognition > Diabetic grading > Content based search > Video surveillance > Lane tracking
> Natural language processing > Drug discovery > Real time translation > Cyber security > Recognize traffic sign
<nviDIA
Source

NVIDIA (www.slideshare.net/openomics/the-revolution-of-deep-learning)
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Practice Needs Theory in Deep Learning

Beats World Champion at Go

At last — a computer program that
can beat a champion Go playe

ALL SYSTEMS GO
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Practice Needs Theory in Deep Learning
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Practice Needs Theory in Deep Learning

Drives Cars
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Practice Needs Theory in Deep Learning
Controls Manufacturing Plants

IMUBIT

Deep Learning

Process Control’

Al process optimization solutions for
oil refineries and chemical plants

Solving the industry’s hardest problems

At Imubit, we're driven by a mission to tackle and solve the toughest
challenges at chemical plants and refineries. We help hydrocarbon

Nadav Cohen (TAU & Imubit) Practical Implications of Theoretical DL IMVC 2020 7 /39



Practice Needs Theory in Deep Learning

But Not Well Understood

M IT Intelligent Machines

Technology
Review The Dark Secret at the
Sterious Machines Heart of Al

No one really knows how the most advanced algorithms do
what they do. That could be a problem.

by WillKnight  April 11,2017

astyear,asti If: the quiet
L roads of Monmouth County, New Jersey. The experimental

vehicle, developed by researchers at the chip maker Nvidia,

didn’t look different from other autonomous cars, but it was unlike

anything demonstrated by Google, Tesla, or General Motors, and it

showed the rising power of artificial intelligence. The car didn’t follow a

single instruction provided by an engineer or programmer. Instead, it

Artifi intelligenceis a . .

black box that thinks inways relied entirely on an algorithm that had taught itself to drive by
don'tunderstand. That's . X

thrilling and scary. p. 54 watching a human do it.
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Practice Needs Theory in Deep Learning

Susceptible to Adversarial Attacks

+.007 x

“panda” noise “gibbon”

577% confidence 99.3% confidence
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Practice Needs Theory in Deep Learning
Exhibits Undesired Biases

Input Output

KD
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Practice Needs Theory in Deep Learning

Leaks Private Information

Private data

Private data - —— ‘ l ——»| Output
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Practice Needs Theory in Deep Learning

Lacks Interpretability

Loan Model with Financial Records

b A » 2 @ )

Report:

—

[ > PN

4 b =) Customer is Why ?
not eligible
for the loan!
N K
Financial and Demographic Data Complex ML model

Epilepsy Detection Model with Brain MRI Data

‘ = @X 2 o« : Why?

X L Patient is
¥ diagnosed
K with Epilepsy
o Ny with %85
confidence.
G_ J
Brain MRI data Complex ML model
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Practice Needs Theory in Deep Learning

Theory May Help Alleviate These Shortcomings

The most practical solution is a good
theory.

— fllbert Einstein —
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Fundamental Qs: Expressiveness, Optimization & Generalization
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Fundamental Qs: Expressiveness, Optimization & Generalization

Statistical Learning Setup
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Fundamental Qs: Expressiveness, Optimization & Generalization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)
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Fundamental Qs: Expressiveness, Optimization & Generalization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)
Y — label space (e.g. R for regression or {1,..., k} for classification)
D — distribution over X x Y (unknown)

0:YxY — Rsg — loss func (e.g. U(y,9) = (y — §)? for Y = R)

Task

Given training set S = {(Xj, yi)}; drawn i.i.d. from D, return hypothesis
(predictor) h: X — Y that minimizes population loss:

Lp(h) == E(x,yy~pll(y; h(X))]
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Fundamental Qs: Expressiveness, Optimization & Generalization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)
Y — label space (e.g. R for regression or {1,..., k} for classification)
D — distribution over X x Y (unknown)

0:YxY — Rsg — loss func (e.g. U(y,9) = (y — §)? for Y = R)

Task
Given training set S = {(Xj, yi)}; drawn i.i.d. from D, return hypothesis
(predictor) h: X — Y that minimizes population loss:

Lp(h) == E(x,yy~pll(y; h(X))]

Approach
Predetermine hypotheses space H C Y%, and return hypothesis h € H

that minimizes empirical loss:
m

Ls(h) = =37 by h(X0)
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Fundamental Qs: Expressiveness, Optimization & Generalization

Three Pillars of Statistical Learning Theory:

Expressiveness, Generalization and Optimization

/ YV (all functions) *\

7 (hypotheses space) .
hp

he
([ ]

S /

f5y — ground truth (minimizer of population loss over yy)

[ Jmy|

h3, — optimal hypothesis (minimizer of population loss over H)
h& — empirically optimal hypothesis (minimizer of empirical loss over )

h — returned hypothesis
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Fundamental Qs: Expressiveness, Optimization & Generalization

Three Pillars of Statistical Learning Theory:
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/ YV (all functions) *\

7 (hypotheses space)
hp

/0
Approximation Error

*
" hs(/ Expressiveness
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Fundamental Qs: Expressiveness, Optimization & Generalization

Classical Machine Learning

Y7 (all functions)

0

7 (hypotheses space)

°
e
i /
h*(/ Approximation Error
h S, Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)
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Fundamental Qs: Expressiveness, Optimization & Generalization

Classical Machine Learning

Y7 (all functions)

0

7 (hypotheses space)

°
e
i /
h*/ Approximation Error
h S Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a convex program:

h = h% ( training err ~ 0 )
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Fundamental Qs: Expressiveness, Optimization & Generalization

Classical Machine Learning

Y7 (all functions)
7 (hypotheses space)

0

°
e
i /
h*/ Approximation Error
h S Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a convex program:

h = h% ( training err ~ 0 )
Expressiveness & Generalization
Bias-variance trade-off:

H approximation err | estimation err

expands ¢ ya
shrinks N e
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Fundamental Qs: Expressiveness, Optimization & Generalization

Classical Machine Learning

Y7 (all functions)
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(Expressiveness)

Training Error
(Optimization)

Optimization
Empirical loss minimization is a convex program:
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Fundamental Qs: Expressiveness, Optimization & Generalization

Deep Learning

Y7 (all functions)

0

7 (hypotheses space)

°
e
i /
h*(/ Approximation Error
h S, Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)
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Deep Learning
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Y7 (all functions)
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Fundamental Qs: Expressiveness, Optimization & Generalization

Deep Learning
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Fundamental Qs: Expressiveness, Optimization & Generalization

Deep Learning

Y7 (all functions)
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Fundamental Qs: Expressiveness, Optimization & Generalization

Deep Learning

y,l’

(all functions)
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(Optimization)
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Examples of Theories with Practical Implications

Outline

9 Examples of Theories with Practical Implications
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis
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© Examples of Theories with Practical Implications
@ Expressiveness via Tensor Analysis
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Sources

Deep SimNets
C + Sharir + Shashua
Computer Vision and Pattern Recognition (CVPR) 2016

On the Expressive Power of Deep Learning: A Tensor Analysis
C + Sharir + Shashua
Conference on Learning Theory (COLT) 2016

Convolutional Rectifier Networks as Generalized Tensor Decompositions
C + Shashua
International Conference on Machine Learning (ICML) 2016

Inductive Bias of Deep Convolutional Networks through Pooling Geometry
C + Shashua
International Conference on Learning Representations (ICLR) 2017

Boosting Dilated Convolutional Networks with Mixed Tensor Decompositions
C + Tamari + Shashua
International Conference on Learning Representations (ICLR) 2018

Deep Learning and Quantum Entanglement:

Fundamental Connections with Implications to Network Design
Levine + Yakira + C + Shashua
International Conference on Learning Representations (ICLR) 2018

Bridging Many-Body Quantum Physics and Deep Learning via Tensor Networks
Levine + Sharir + C + Shashua
Physical Review Letters (PRL) 2019

Nadav Cohen (TAU & Imubit) Practical Implications of Theoretical DL IMVC 2020
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Collaborators

Or Sharir Amnon Shashua

THE HEBREW
UNIVERSITY
OF JERUSALEM

Ronen Tamari David Yakira
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Expressiveness

/ ‘)/’F (all functions) *X

fZ?

®
Approximation Error

(Expressiveness)

S /

5 — ground truth

7/ (hypotheses space)

he
([ ]

[ Iyl

h7, — optimal hypothesis
hs — empirically optimal hypothesis
h — returned hypothesis
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Tensor Analysis for Convolutional Neural Networks
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Tensor Analysis for Convolutional Neural Networks

We derived an equivalence:
Convolutional Neural Networks (CNN) Hierarchical Tensor Factorizations (HTF)

input  conv

B 55w
(P59 :
AR AR
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Tensor Analysis for Convolutional Neural Networks

We derived an equivalence:
Convolutional Neural Networks (CNN) Hierarchical Tensor Factorizations (HTF)

input  conv

B 55w
(P59 :
AR AR

HTF are widely used in Applied Math and Quantum Physics
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Tensor Analysis for Convolutional Neural Networks

We derived an equivalence:
Convolutional Neural Networks (CNN) Hierarchical Tensor Factorizations (HTF)

input  conv

B 55w
(P59 :
AR AR

HTF are widely used in Applied Math and Quantum Physics

We adopted tools from these domains to analyze expressiveness of CNN

Nadav Cohen (TAU & Imubit) Practical Implications of Theoretical DL IMVC 2020 24 / 39



Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Layer Widths
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Layer Widths

Currently no principle for choosing widths (# of channels) of CNN layers

o _ dog (001)

cat (0.04)
boat (0.94)
bird (0.02)
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Layer Widths

Currently no principle for choosing widths (# of channels) of CNN layers

'&%ﬁh“
Deep (early) layer widths needed to express long (short)-range correlations
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Examples of Theories with Practical Implications

Expressiveness via Tensor Analysis

Result: Guideline for Choosing Layer Widths

Currently no principle for choosing widths (# of channels) of CNN layers

Deep (early) layer widths needed to express long (short)-range correlations

dog (0.01)

cat (0.04)
boat (0.94)
bird (0.02)

Experiment

4
Global Task I »° Local Task 2 Wide-tip
- c
90 - —— §
80 . - =
oy e E— S
© - — I
O %
5 70 * layer depth
o
o / "
L e—e Wide-base - test | & Wide-base - test 2 Wide-base
+ -+ Wide-base - train + -+ Wide-base - train 5
el ¥ o—e Wide-tip - test w o—e Wide-tip - test g
+ -+ Wide-tip - train + = Wide-tip - train 5
50 * layer depth
10 15 20 2 30 10 5 2 i3 30
# of channels parameter # of channels parameter
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Pooling Geometry
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Expressiveness via Tensor Analysis

Examples of Theories with Practical Implications

Result: Guideline for Choosing Pooling Geometry

CNN typically employ square conv/pool windows

convl_act
(2ax24x16)

x_image pooll
(38x28) (12x12x16)

cMapl
(5x5x16)
[

[

Currently no principle for choosing window geometries

IMVC 2020

Practical Implications of Theoretical DL

Nadav Cohen (TAU & Imubit)



Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Pooling Geometry (cont'd)

Input elements pooled together early have stronger correlation \
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Examples of Theories with Practical Implications Expressiveness via Tensor Analysis

Result: Guideline for Choosing Pooling Geometry (cont'd)

Input elements pooled together early have stronger correlation

Experiment

datd

high d low high
symmetry: low symmetry: low symmetry: high symmetry: high
square pooling mirror pooling

(local interactions) (interactions between reflections)

arChS

d task . symmetry task

« square pool - train
-« square pool - test
mirror pool - train

Nadav Cohen
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Outline

9 Examples of Theories with Practical Implications

@ Optimization & Generalization via Dynamical Analysis
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Sources

On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization

Arora + C + Hazan (alphabetical order)
International Conference on Machine Learning (ICML) 2018

A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Arora + C + Golowich + Hu (alphabetical order)
International Conference on Learning Representations (ICLR) 2019

Implicit Regularization in Deep Matrix Factorization
Arora + C + Hu + Luo (alphabetical order)
Conference on Neural Information Processing Systems (NeurlPS) 2019

Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Razin + C
Conference on Neural Information Processing Systems (NeurlPS) 2020
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Collaborators

Sanjeev Arora

Yuping Luo Noam Razin

Goc /gle

000

TEL AVIV UNIVERSITY

PRINCETON
UNTVERSITY
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Optimization & Generalization

/ Y (all functions) . \

f,
7 (hypotheses space) .D
h,
= hg/
ré/—;‘ Estimation Error
Training Error (Generalization)

(Optimization)

S /

f5 — ground truth

h7, — optimal hypothesis
hs — empirically optimal hypothesis
h — returned hypothesis
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Dynamical Analysis for Linear Neural Networks
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Dynamical Analysis for Linear Neural Networks

Linear Neural Networks (LNN) are neural networks with no activation

X — Wlﬁ Wzﬁ . ..%WN% y:WN...W2W1X
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Dynamical Analysis for Linear Neural Networks

Linear Neural Networks (LNN) are neural networks with no activation

X — Wlﬁ Wzﬁ . ..%WN% y:WN...W2W1X

Expressiveness of LNN is trivial, but optimization & generalization are not!
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Dynamical Analysis for Linear Neural Networks

Linear Neural Networks (LNN) are neural networks with no activation

% %W_'IHWZ%"'%WN% y:W ...W2W1X

Expressiveness of LNN is trivial, but optimization & generalization are not!

We study them by analyzing the dynamics (trajectories) of GD

N
” m
715\
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Result: Depth Can Accelerate Optimization
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Result: Depth Can Accelerate Optimization

GD over LNN can converge arbitrarily faster than GD over linear model
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Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Result: Depth Can Accelerate Optimization

GD over LNN can converge arbitrarily faster than GD over linear model

Experiment

v — GD @ 1-layer
— GD @ 2-layer
— GD @ 3-layer
2 10
o
1072
0 200000 100000 600000 800000 1000000
iteration
Nadav Cohen Practical Implications of Theoretical DL IMVC 2020 33 /39




Examples of Theories with Practical Implications Optimization & Generalization via Dynamical Analysis

Result: Depth Can Accelerate Optimization

GD over LNN can converge arbitrarily faster than GD over linear model

Experiment

100

— GDh@ 1
D@2 Depth can speed-up GD,

— GD @ 3-layer even without any gain in
expressiveness, and despite
introducing non-convexity!

2 10
Ke]

0 200000 100000 600000 800000 1000000
iteration

Nadav Cohen (TAU & Imubit) Practical Implications of Theoretical DL IMVC 2020 33 /39



Optimization & Generalization via Dynamical Analysis

Examples of Theories with Practical Implications

Result: Depth Can Accelerate Optimization

GD over LNN can converge arbitrarily faster than GD over linear model

Experiment

10°
— GD @ 1-layer
D@ 2iayer Depth can speed-up GD,
. — GD @ 3-layer even without any gain in
B expressiveness, and despite
N introducing non-convexity!

0 200000 100000 600000 800000 1000000

iteration
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Blind Super-Resolution Kernel Estimation using an Internal-GAN < \va found that using a deep linear network
is dramatically superior to a single-strided

Sefi Bell-Kligler Assaf Shocher Michal Irani . . . . . .
Dept.of Compute Sience and Applied Mith one. This is consistent with recent findings in
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/]\

(cf. Bell-Kligler, Shocher & Irani (2019); Jing, Zbontar & LeCun (2020))
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