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Motivation

Success of deep neural networks (DNNs) is driven by Gradient Descent (GD)

Approaches for theoretical analysis:

● Discrete: directly analyze GD, i.e. treat 𝜂 > 0

● Continuous: analyze Gradient Flow (GF), i.e. take 𝜂 → 0

Often more tractable, but unrealistic!

Does GF over DNNs represent GD?

Open Question
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Background: Numerical Integration

Differential Equation 

Numerical approximation:

Numerical error

Euler’s method

Fundamental Theorem [Hairer et al. 1993]

step size (predetermined)

4

https://link.springer.com/book/10.1007/978-3-540-78862-1


Numerical Integration 

Differential Equation

Euler’s method

GF

GD

Numerical error GF-GD distance

Optimization

5



GF-GD Distance Depends on Convexity

Problem: in worst case, exponentially small 𝜂 needed for non-convex objective

Strongly convex Non-strongly convex Non-convex

Small enough step size 𝜂 guarantees 𝜖-distance. How small?

Claim: exist settings where non-convex bound on 𝜂 is tight

Coarsely taking 𝜆𝑚𝑖𝑛 ≔ 𝑖𝑛𝑓𝒒𝜆𝑚𝑖𝑛 ∇2𝑓 𝒒 instead of 𝜆𝑚𝑖𝑛 ∇2𝑓 𝜽 𝑡′ yields:
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Worst Case Scenario: Proof Sketch

Consider:

where:
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anisotropic

Worst Case Scenario: Proof Sketch

Regions in weight space:

isotropic
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When init in anisotropic region, both GF and GD continue to isotropic one

At entrance to isotropic region, GF-GD discrepancy is proportional to step size 𝜂

Throughout isotropic region, discrepancy grows exponentially with time, i.e. as

For discrepancy at time   less than   , must have

Worst Case Scenario: Proof Sketch

anisotropic

region

isotropic

region
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DNN Optimization is Roughly Convex

Theorem: min eigenvalue of Hessian along GF trajectory over 

(homogeneous) DNN init near zero is only slightly negative

⟹ for (homogeneous) DNN init near zero:
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Problem: in worst case, exponentially small 𝜂 needed for non-convex objective

GF ≈ GD

slightly negative

slightly positive

What about DNNs?



Theorem: min eigenvalue of Hessian along GF trajectory over 

(homogeneous) DNN init near zero is only slightly negative

DNN Optimization is Roughly Convex: Proof Sketch*

* For linear DNNs; non-linear DNNs treated similarly (where differentiable)

Linear DNN:

Training objective: 

end-to-end matrix

end-to-end objective
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DNN Optimization is Roughly Convex: Proof Sketch*

Hessian:

Implies:

GF init near zero maintains balancedness:  [Du et al. 2018]

Under balancedness:

small at initsmall at convergence
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https://arxiv.org/abs/1806.00900


Translating Continuous Analysis to Discrete Result

Setup: linear DNN (arbitrarily deep), scalar output

Proposition: GF → global min almost surely under random near zero init

Theorem: GD efficiently → global min almost surely under random near zero init

Theorem: min eigenvalue of Hessian along GF trajectory over 

(homogeneous) DNN init near zero is only slightly negative

GF-GD Translation Machinery
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Translating Continuous Analysis to Discrete Result

Theorem: GD efficiently → global min almost surely under random near zero init

First guarantee of GD over fixed size DNN (depth≥3) efficiently 

converging to global min almost surely under random init!

We not only know GD reaches global min, but also 

its path (sheds light on implicit regularization)
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GF Convergence: Proof Sketch

Using dynamics, we establish three phases of optimization:

Proposition: GF → global min almost surely under random near zero init

Dynamics induced by GF init near zero:  [Arora et al. 2018]

End-to-end matrix:

init

origin (stationary point)
target

(i) approaching origin

(ii) escaping origin (iii) exponential convergence
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https://arxiv.org/abs/1802.06509


Experiments

Over simple DNNs, indeed GF ≈ GD

Similar results for convolutional networks
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New variants of GF aim to capture GD with large step size

Future Work: Large Step Size Regime

Recent evidence: large step size for GD can improve generalization

Future work: adapt our analysis to account for such variants

Modified Flow

Gradient Descent

(large step size)

Smith et al. 2021, 

Barrett & Dherin 2020, 

Kunin et al. 2020
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https://arxiv.org/abs/2101.12176
https://arxiv.org/abs/2009.11162
https://arxiv.org/abs/2012.04728


Conclusion

● “Rough convexity” holds along GF trajectories over (homogeneous) DNNs

● Translation of GF analysis to GD ⇒ first convergence guarantee of its kind!

● Experiments with simple DNNs verify GF ≈ GD

● GF-GD distance is small if landscape along GF trajectory is “roughly convex”

Hypothesis: GF will unravel mysteries behind deep learning
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Thank you!
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