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Abstract

Existing analyses of optimization in deep learning are either continuous, focusing on

(variants of) gradient flow, or discrete, directly treating (variants of) gradient descent.

Gradient flow is amenable to theoretical analysis, but is stylized and disregards
computational efficiency. The extent to which it represents gradient descent is an

open question in the theory of deep learning. The current paper studies this question.

Viewing gradient descent as an approximate numerical solution to the initial value
problem of gradient flow, we find that the degree of approximation depends on the
curvature around the gradient flow trajectory. We then show that over deep neural
networks with homogeneous activations, gradient flow trajectories enjoy favorable
curvature, suggesting they are well approximated by gradient descent. This finding
allows us to translate an analysis of gradient flow over deep linear neural networks
into a guarantee that gradient descent efficiently converges to global minimum
almost surely under random initialization. Experiments suggest that over simple
deep neural networks, gradient descent with conventional step size is indeed close
to gradient flow. We hypothesize that the theory of gradient flows will unravel
mysteries behind deep learning.!
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Motivation

Success of deep neural networks (DNNS) is driven by Gradient Descent (GD)
Or11 =0, —nVf(0)

Approaches for theoretical analysis:

e Continuous: analyze Gradient Flow (GF), i.e. taken — 0
70(t) ==V f(6(t))

e Discrete: directly analyze GD, i.e. treatn > 0

Often more tractable, but unrealistic!

Open Question

Does GF over DNNSs represent GD?




Background: Numerical Integration

Differential Equation | <-0(t) = g(6(t))

step size (predetermined)

Numerical approximation:

v
Ori1 =0 +ng(0) 0. ~ 0(kn)

Euler's method

Fundamental Theorem

Numerical error 10(t) — Op—i/n|| <t exp(fﬂt Amax(Jg007))) dt")



https://link.springer.com/book/10.1007/978-3-540-78862-1

Numerical Integration g = —Vf Optlmlzatlon ..o.,o,,,

Differential Equation GF
10(t)=g(0(t)) 10(t) = -V f(0(t))
Euler’'s method GD
0r+1=0x +ng(6y) Ori1 =0 — V[ (6k)
Numerical error GF-GD distance
10(t) — k=il < 18(t) = Or=i/nll <

nt exp( JyAmax(Ja(o@))) dt') nt exp(— [y Amin (Vf(0(t))) dt’)




GF-GD Distance Depends on Convexity

[0() — Or—i/y|| <ntexp(— jﬂ min (VZf(0(t"))) dt')

Small enough step size n guarantees e-distance. How small?

Coarsely taking Amin = inf, Amin (V> f(q)) instead of A\, (V2£(6(1'))) yields:

Strongly convex Non-strongly convex Non-convex
(Amin > 0) ns e (Amin = 0) n=c¢e/t (Amin < 0) n < E/tel)‘“”nlt

Claim: exist settings where non-convex bound on 7 is tight

Problem: in worst case, exponentially small n needed for non-convex objective



Worst Case Scenario: Proof Sketch

Claim: exist settings where non-convex bound on 7 is tight
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Worst Case Scenario: Proof Sketch

f(01,02) = (61) + P(6-)

Regions in weight space:
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Worst Case Scenario: Proof Sketch

When init in anisotropic region, both GF and GD continue to isotropic one

At entrance to isotropic region, GF-GD discrepancy is proportional to step size n

Throughout isotropic region, discrepancy grows exponentially with time, i.e. ase

For discrepancy at time ¢ less than ¢, must have 1 € O(e¢~ %)
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DNN Optimization is Roughly Convex

10(8) — B1—yjall <t exD(— [ Auin (V2 (0(1))) d')

Problem: in worst case, exponentially small n needed for non-convex objective

What about DNNs?

Theorem: min eigenvalue of Hessian along GF trajectory over
(homogeneous) DNN init near zero is only slightly negative

= for (homogeneous) DNN init near zero:
slightly positive

e I

“9( gk t/n | < ’}f(\l)( j() mm( H(f’))) (HI) GF = GD

J

YT

shghtly negative
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DNN Optimization is Roughly Convex: Proof Sketch*

Theorem: min eigenvalue of Hessian along GF trajectory over
(homogeneous) DNN init near zero is only slightly negative

* For linear DNNs; non-linear DNNSs treated similarly (where differentiable)

Linear DNN: end-to-end matrix
f Wn:l = Wan—l T Wl
0=Wy, Wy, ....,W,) ho(x) = Wyax
Training objective: _—1 end-to-end objective

f(e) — ¢(Wn1)
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DNN Optimization is Roughly Convex: Proof Sketch*

Wj’:j = Wj’Wj’—l e Wl

Hessian: vd
V2 f(0)[AW1, AW, ..., AWo] = V2G(Wii1) | £y W41 (AW;) W 1.1

+2Tr (Vd)(Wn:l )" 1<t <nWaigr+1 (AW ) Wir 1541 (AW; )Wj_l;l)

Implies:

)\mln(vzf(g)) 2; - ||V¢(Wn1) ||Fr0benius "};la?f I—[jffj ||I{!J ||.~;pcctral

Cln]
|7 |=n—2

GF init near zero maintains balancedness:
- T Ao T ]
Under balancedness:

1-2/n
/\min(vzf(g)) 2 _qub(Wn:l)HFrobenius”Wn:l”Sped/;rgﬂ
- AN J
' '

small at convergence small at init


https://arxiv.org/abs/1806.00900

Translating Continuous Analysis to Discrete Result

Setup: linear DNN (arbitrarily deep), scalar output

Proposition: GF — global min almost surely under random near zero init

U

4 GF-GD Translation Machinery )
Hg(f) o 95‘2!}:;” g ”f QXI)(_J;)\min (sz(ﬂ(f’))) dt;)

Theorem: min eigenvalue of Hessian along GF trajectory over
(homogeneous) DNN init near zero is only slightly negative

- J
U

Theorem: GD efficiently — global min almost surely under random near zero init

13



Translating Continuous Analysis to Discrete Result

Theorem: GD efficiently — global min almost surely under random near zero init

First guarantee of GD over fixed size DNN (depth = 3) efficiently
converging to global min almost surely under random init!

We not only know GD reaches global min, but also
its path (sheds light on implicit regularization)
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GF Convergence: Proof Sketch

Proposition: GF — global min almost surely under random near zero init

End-to-end matrix:

Wn:l = Wan—l T Wl

Dynamics induced by GF init near zero:

W1 (8) = ~V(Wasa () (Wit (Ol 5 ahemius o + (0 = D [Wola () Wra ()] ")

Using dynamics, we establish three phases of optimization:

target
?

origin (stationary point)

(i) approaching origin

init

?

_/

(iii) exponential convergence



https://arxiv.org/abs/1802.06509

Training Loss

Experiments

Over simple DNNs, indeed GF =~ GD

Fully Connected, Linear Activation
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Fully Connected, Rectified Linear Activation
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Future Work: Large Step Size Regime

Recent evidence: large step size for GD can improve generalization

New variants of GF aim to capture GD with large step size Smith et al. 2021
Barrett & Dherin 2020

Kunin et al. 2020

Future work: adapt our analysis to account for such variants

Gradient Descent |27
(large step size) [



https://arxiv.org/abs/2101.12176
https://arxiv.org/abs/2009.11162
https://arxiv.org/abs/2012.04728

Conclusion

GF-GD distance is small if landscape along GF trajectory is “roughly convex”
“Rough convexity” holds along GF trajectories over (homogeneous) DNNs

Translation of GF analysis to GD = first convergence guarantee of its kind!

Experiments with simple DNNs verify GF = GD

Hypothesis: GF will unravel mysteries behind deep learning

18



Thank you!



