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How Does Depth Help?

Conventional wisdom:
 Depth boosts expressive power

This work:

Depth can accelerate optimization!
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Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study — deeper nets may
seem to optimize faster per being able to reach lower training err

Resolution:
* We focus on models whose expressiveness is oblivious to
depth — linear neural networks

 Adding layers amounts to replacing matrix param by product
of matrices — overparameterization

Linear neural networks were studied extensively, cf. [Saxe et al.
2013; Kawaguchi 2016; Hardt & Ma 2016]
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Training objective for linear regression with £, loss:

L(w) = z L (x"w — y)° [ convex}

(x,y)€ES p

Overparameterize — replace vector w by vector w4 times scalar w,:

. 1 p
L(wq,wy) = 2 = (xTW1W2 B )’) [ non-convex }
(x,y)ES P

Claim:

* Gradient descent (GD) over L(wq, w,) induces on w = wqws:

t—1
WD w® — p© L gL (®) - z 0. 7L(w®)
=1

adaptive learning rate “momentum”

* Forp > 2, this can speed up optimization (cf. [Saxe et al. 2013])



Formal Setup

Linear neural network:

X —>

Wy

W,

—> Y

Wy - W, - W, x

4/9



Formal Setup

Linear neural network:

X —>

Wy

W,

— y =1/VN...W2 .lex

~

We

end-to-end weight matrix

4/9



4/9
Formal Setup

Linear neural network:

x9W19W29 """ QWNQ y=WN"‘W2'W1x
N J

Y

We

end-to-end weight matrix

Given loss L over linear model, we have the overparameterized loss:

LWy, -, Wy) = L(W,)



4/9
Formal Setup

Linear neural network:

x9W19W29 """ QWNQ y=WN"‘W2'W1x
N J
Y

We

end-to-end weight matrix

Given loss L over linear model, we have the overparameterized loss:

LWy, -, Wy) = L(W,)

Question:
How does I/, behave during GD over W, ---, Wj?
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Implicit Dynamics of
Gradient Descent

Theorem:

GD over W3, ---, Wy with small learning rate and near-zero init,
induces on I/, the end-to-end update rule:

M/e(t+1) oL [/Ve(t)
j—1 N-j

B

J=1
which is a:
* preconditioner promoting movement in directions already taken

e certain combination of adaptive learning rate and “momentum”

Overparameterization with deep linear net induces on GD a
certain acceleration scheme! No dependence on layer widths!
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Overparameterization via
Objective Modification?

Theorem:

There exists no objective func (of I//,) over which GD gives the
end-to-end update rule

Proof sketch:

Fundamental theorem for line integrals:

$. Vg =0 Vfuncg,closedcurvel @

Construct curve on which line integral of end-to-end updates # 0

Effect of overparameterization by depth cannot
be attained via any modification of the objective!
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Depth vs. Explicit Accelerators
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This speed up can outperform
explicit acceleration methods
designed for convex problems!
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Experiments — Non-Linear Network

TensorFlow CNN tutorial for MNIST
Overparameterization: fully-connected layers - depth-2 linear nets
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iteration

With +15% in params, and no change in expressiveness,
overparameterization accelerated by orders of magnitude!
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Conclusion

 Depth radically changes obj landscape, turns it highly non-convex
* Conventional wisdom: this complicates optimization

e We show:

— For linear nets, depth induces on GD a preconditioning scheme
— Preconditioning combines adaptive learning rate and “momentum”
— Effect cannot be attained via any modification of original objective

— Can lead to significant speed ups, despite no change in expressiveness
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