
On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization

Sanjeev Arora*† Nadav Cohen† Elad Hazan*‡

International Conference on Machine Learning (ICML) 2018

*Princeton University †Institute for Advanced Study ‡Google Brain

How Does Depth Help?

1 / 9

How Does Depth Help?

Conventional wisdom:

• Depth boosts expressive power

1 / 9

How Does Depth Help?

Conventional wisdom:

• Depth boosts expressive power

• But complicates optimization

1 / 9

How Does Depth Help?

Conventional wisdom:

• Depth boosts expressive power

• But complicates optimization

This work:

Depth can accelerate optimization!

1 / 9

Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study – deeper nets may
seem to optimize faster per being able to reach lower training err

2 / 9

Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study – deeper nets may
seem to optimize faster per being able to reach lower training err

Resolution:

• We focus on models whose expressiveness is oblivious to
depth – linear neural networks

2 / 9

Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study – deeper nets may
seem to optimize faster per being able to reach lower training err

Resolution:

• We focus on models whose expressiveness is oblivious to
depth – linear neural networks

• Adding layers amounts to replacing matrix param by product
of matrices – overparameterization

2 / 9

Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study – deeper nets may
seem to optimize faster per being able to reach lower training err

Resolution:

• We focus on models whose expressiveness is oblivious to
depth – linear neural networks

• Adding layers amounts to replacing matrix param by product
of matrices – overparameterization

Linear neural networks were studied extensively, cf. [Saxe et al.
2013; Kawaguchi 2016; Hardt & Ma 2016]

2 / 9

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

3 / 9

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆
 convex

3 / 9

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Overparameterize – replace vector 𝒘 by vector 𝒘𝟏 times scalar 𝑤2:

𝐿 𝒘𝟏, 𝑤2 =
1

𝑝
𝒙𝑇𝒘𝟏𝑤2 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

convex

3 / 9

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Overparameterize – replace vector 𝒘 by vector 𝒘𝟏 times scalar 𝑤2:

𝐿 𝒘𝟏, 𝑤2 =
1

𝑝
𝒙𝑇𝒘𝟏𝑤2 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

convex

non-convex

3 / 9

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Overparameterize – replace vector 𝒘 by vector 𝒘𝟏 times scalar 𝑤2:

𝐿 𝒘𝟏, 𝑤2 =
1

𝑝
𝒙𝑇𝒘𝟏𝑤2 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Claim:

• Gradient descent (GD) over 𝐿 𝒘𝟏, 𝑤2 induces on 𝒘 = 𝒘𝟏𝑤2:

𝒘 𝑡+1 ⟻ 𝒘 𝑡 − 𝜌 𝑡 ∙ 𝛻𝐿 𝒘 𝑡 − 𝜇(𝑡,𝜏)∙
𝑡−1

𝜏=1
𝛻𝐿 𝒘 𝜏

convex

non-convex

3 / 9

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Overparameterize – replace vector 𝒘 by vector 𝒘𝟏 times scalar 𝑤2:

𝐿 𝒘𝟏, 𝑤2 =
1

𝑝
𝒙𝑇𝒘𝟏𝑤2 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Claim:

• Gradient descent (GD) over 𝐿 𝒘𝟏, 𝑤2 induces on 𝒘 = 𝒘𝟏𝑤2:

𝒘 𝑡+1 ⟻ 𝒘 𝑡 − 𝜌 𝑡 ∙ 𝛻𝐿 𝒘 𝑡 − 𝜇(𝑡,𝜏)∙
𝑡−1

𝜏=1
𝛻𝐿 𝒘 𝜏

convex

non-convex

3 / 9

adaptive learning rate

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Overparameterize – replace vector 𝒘 by vector 𝒘𝟏 times scalar 𝑤2:

𝐿 𝒘𝟏, 𝑤2 =
1

𝑝
𝒙𝑇𝒘𝟏𝑤2 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Claim:

• Gradient descent (GD) over 𝐿 𝒘𝟏, 𝑤2 induces on 𝒘 = 𝒘𝟏𝑤2:

𝒘 𝑡+1 ⟻ 𝒘 𝑡 − 𝜌 𝑡 ∙ 𝛻𝐿 𝒘 𝑡 − 𝜇(𝑡,𝜏)∙
𝑡−1

𝜏=1
𝛻𝐿 𝒘 𝜏

convex

non-convex

3 / 9

adaptive learning rate “momentum”

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Overparameterize – replace vector 𝒘 by vector 𝒘𝟏 times scalar 𝑤2:

𝐿 𝒘𝟏, 𝑤2 =
1

𝑝
𝒙𝑇𝒘𝟏𝑤2 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Claim:

• Gradient descent (GD) over 𝐿 𝒘𝟏, 𝑤2 induces on 𝒘 = 𝒘𝟏𝑤2:

𝒘 𝑡+1 ⟻ 𝒘 𝑡 − 𝜌 𝑡 ∙ 𝛻𝐿 𝒘 𝑡 − 𝜇(𝑡,𝜏)∙
𝑡−1

𝜏=1
𝛻𝐿 𝒘 𝜏

• For 𝑝 > 2, this can speed up optimization

convex

non-convex

3 / 9

adaptive learning rate “momentum”

Warm-Up

Training objective for linear regression with ℓ𝑝 loss:

𝐿 𝒘 =
1

𝑝
𝒙𝑇𝒘 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Overparameterize – replace vector 𝒘 by vector 𝒘𝟏 times scalar 𝑤2:

𝐿 𝒘𝟏, 𝑤2 =
1

𝑝
𝒙𝑇𝒘𝟏𝑤2 − 𝑦

𝒑

(𝒙,𝑦)∈𝑆

Claim:

• Gradient descent (GD) over 𝐿 𝒘𝟏, 𝑤2 induces on 𝒘 = 𝒘𝟏𝑤2:

𝒘 𝑡+1 ⟻ 𝒘 𝑡 − 𝜌 𝑡 ∙ 𝛻𝐿 𝒘 𝑡 − 𝜇(𝑡,𝜏)∙
𝑡−1

𝜏=1
𝛻𝐿 𝒘 𝜏

• For 𝑝 > 2, this can speed up optimization (cf. [Saxe et al. 2013])

convex

non-convex

3 / 9

adaptive learning rate “momentum”

Formal Setup

Linear neural network:

 𝑊1 𝑊2 𝑊𝑁 𝒙 𝒚 = 𝑊𝑁 ⋯𝑊2 ∙ 𝑊1 𝒙

4 / 9

Formal Setup

Linear neural network:

 𝑊1 𝑊2 𝑊𝑁 𝒙 𝒚 = 𝑊𝑁 ⋯𝑊2 ∙ 𝑊1 𝒙

𝑊𝑒

end-to-end weight matrix

4 / 9

Formal Setup

Linear neural network:

Given loss 𝐿 over linear model, we have the overparameterized loss:

𝐿 𝑊1, ⋯ ,𝑊𝑁 = 𝐿(𝑊𝑒)

 𝑊1 𝑊2 𝑊𝑁 𝒙 𝒚 = 𝑊𝑁 ⋯𝑊2 ∙ 𝑊1 𝒙

𝑊𝑒

end-to-end weight matrix

4 / 9

Formal Setup

Linear neural network:

Given loss 𝐿 over linear model, we have the overparameterized loss:

𝐿 𝑊1, ⋯ ,𝑊𝑁 = 𝐿(𝑊𝑒)

Question:

How does 𝑊𝑒 behave during GD over 𝑊1, ⋯ ,𝑊𝑁?

 𝑊1 𝑊2 𝑊𝑁 𝒙 𝒚 = 𝑊𝑁 ⋯𝑊2 ∙ 𝑊1 𝒙

𝑊𝑒

end-to-end weight matrix

4 / 9

Implicit Dynamics of
Gradient Descent

Theorem:

GD over 𝑊1, ⋯ ,𝑊𝑁 with small learning rate and near-zero init,
induces on 𝑊𝑒 the end-to-end update rule:

𝑊𝑒
𝑡+1 ⟻ 𝑊𝑒

𝑡

− 𝜂 𝑊𝑒
𝑡 𝑊𝑒

𝑡
𝑇

𝑗−1
𝑁

𝛻𝐿 𝑊𝑒
𝑡 𝑊𝑒

𝑡
𝑇
𝑊𝑒

𝑡

𝑁−𝑗
𝑁

𝑁

𝑗=1

5 / 9

Implicit Dynamics of
Gradient Descent

Theorem:

GD over 𝑊1, ⋯ ,𝑊𝑁 with small learning rate and near-zero init,
induces on 𝑊𝑒 the end-to-end update rule:

𝑊𝑒
𝑡+1 ⟻ 𝑊𝑒

𝑡

− 𝜂 𝑊𝑒
𝑡 𝑊𝑒

𝑡
𝑇

𝑗−1
𝑁

𝛻𝐿 𝑊𝑒
𝑡 𝑊𝑒

𝑡
𝑇
𝑊𝑒

𝑡

𝑁−𝑗
𝑁

𝑁

𝑗=1

which is a:

• preconditioner promoting movement in directions already taken

5 / 9

Implicit Dynamics of
Gradient Descent

Theorem:

GD over 𝑊1, ⋯ ,𝑊𝑁 with small learning rate and near-zero init,
induces on 𝑊𝑒 the end-to-end update rule:

𝑊𝑒
𝑡+1 ⟻ 𝑊𝑒

𝑡

− 𝜂 𝑊𝑒
𝑡 𝑊𝑒

𝑡
𝑇

𝑗−1
𝑁

𝛻𝐿 𝑊𝑒
𝑡 𝑊𝑒

𝑡
𝑇
𝑊𝑒

𝑡

𝑁−𝑗
𝑁

𝑁

𝑗=1

which is a:

• preconditioner promoting movement in directions already taken

• certain combination of adaptive learning rate and “momentum”

5 / 9

Implicit Dynamics of
Gradient Descent

Theorem:

GD over 𝑊1, ⋯ ,𝑊𝑁 with small learning rate and near-zero init,
induces on 𝑊𝑒 the end-to-end update rule:

𝑊𝑒
𝑡+1 ⟻ 𝑊𝑒

𝑡

− 𝜂 𝑊𝑒
𝑡 𝑊𝑒

𝑡
𝑇

𝑗−1
𝑁

𝛻𝐿 𝑊𝑒
𝑡 𝑊𝑒

𝑡
𝑇
𝑊𝑒

𝑡

𝑁−𝑗
𝑁

𝑁

𝑗=1

which is a:

• preconditioner promoting movement in directions already taken

• certain combination of adaptive learning rate and “momentum”

Overparameterization with deep linear net induces on GD a
certain acceleration scheme! No dependence on layer widths!

5 / 9

Overparameterization via
Objective Modification?

6 / 9

Overparameterization via
Objective Modification?

Theorem:

There exists no objective func (of 𝑊𝑒) over which GD gives the
end-to-end update rule

6 / 9

Overparameterization via
Objective Modification?

6 / 9

Theorem:

There exists no objective func (of 𝑊𝑒) over which GD gives the
end-to-end update rule

Proof sketch:

Fundamental theorem for line integrals:

 𝛻𝑔
Γ

= 0 ∀ func 𝑔 , closed curve Γ

Construct curve on which line integral of end-to-end updates ≠ 0

Overparameterization via
Objective Modification?

6 / 9

Theorem:

There exists no objective func (of 𝑊𝑒) over which GD gives the
end-to-end update rule

Proof sketch:

Fundamental theorem for line integrals:

 𝛻𝑔
Γ

= 0 ∀ func 𝑔 , closed curve Γ

Construct curve on which line integral of end-to-end updates ≠ 0

Effect of overparameterization by depth cannot
be attained via any modification of the objective!

Experiments – Linear Networks

Regression problem from UCI ML Repository; ℓ4 loss

7 / 9

Experiments – Linear Networks

Regression problem from UCI ML Repository; ℓ4 loss

The Effect of Depth

7 / 9

Experiments – Linear Networks

Depth can speed up GD, even w/o
any change in expressiveness, and
despite introducing non-convexity!

Regression problem from UCI ML Repository; ℓ4 loss

The Effect of Depth

7 / 9

Experiments – Linear Networks

Depth can speed up GD, even w/o
any change in expressiveness, and
despite introducing non-convexity!

Regression problem from UCI ML Repository; ℓ4 loss

The Effect of Depth Depth vs. Explicit Accelerators

7 / 9

Experiments – Linear Networks

Depth can speed up GD, even w/o
any change in expressiveness, and
despite introducing non-convexity!

This speed up can outperform
explicit acceleration methods

designed for convex problems!

Regression problem from UCI ML Repository; ℓ4 loss

The Effect of Depth Depth vs. Explicit Accelerators

7 / 9

Experiments – Non-Linear Network

TensorFlow CNN tutorial for MNIST

Overparameterization: fully-connected layers → depth-2 linear nets

8 / 9

Experiments – Non-Linear Network

TensorFlow CNN tutorial for MNIST

Overparameterization: fully-connected layers → depth-2 linear nets

With +15% in params, and no change in expressiveness,
overparameterization accelerated by orders of magnitude!

8 / 9

Conclusion

9 / 9

Conclusion

• Depth radically changes obj landscape, turns it highly non-convex

9 / 9

Conclusion

• Depth radically changes obj landscape, turns it highly non-convex

• Conventional wisdom: this complicates optimization

9 / 9

Conclusion

• Depth radically changes obj landscape, turns it highly non-convex

• Conventional wisdom: this complicates optimization

• We show:

– For linear nets, depth induces on GD a preconditioning scheme

9 / 9

Conclusion

• Depth radically changes obj landscape, turns it highly non-convex

• Conventional wisdom: this complicates optimization

• We show:

– For linear nets, depth induces on GD a preconditioning scheme

– Preconditioning combines adaptive learning rate and “momentum”

9 / 9

Conclusion

• Depth radically changes obj landscape, turns it highly non-convex

• Conventional wisdom: this complicates optimization

• We show:

– For linear nets, depth induces on GD a preconditioning scheme

– Preconditioning combines adaptive learning rate and “momentum”

– Effect cannot be attained via any modification of original objective

9 / 9

Conclusion

• Depth radically changes obj landscape, turns it highly non-convex

• Conventional wisdom: this complicates optimization

• We show:

– For linear nets, depth induces on GD a preconditioning scheme

– Preconditioning combines adaptive learning rate and “momentum”

– Effect cannot be attained via any modification of original objective

– Can lead to significant speed ups, despite no change in expressiveness

9 / 9

Thank You

