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Problem: 

Expressiveness can interfere with our study – deeper nets may 
seem to optimize faster per being able to reach lower training err 

Resolution: 

• We focus on models whose expressiveness is oblivious to 
depth – linear neural networks 

• Adding layers amounts to replacing matrix param by product 
of matrices – overparameterization 

Linear neural networks were studied extensively, cf. [Saxe et al. 
2013; Kawaguchi 2016; Hardt & Ma 2016] 
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Given loss 𝐿 over linear model, we have the overparameterized loss: 

𝐿 𝑊1, ⋯ ,𝑊𝑁 = 𝐿(𝑊𝑒) 

Question: 

How does 𝑊𝑒 behave during GD over 𝑊1, ⋯ ,𝑊𝑁? 
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which is a: 

• preconditioner promoting movement in directions already taken 

• certain combination of adaptive learning rate and “momentum”  

Overparameterization with deep linear net induces on GD a 
certain acceleration scheme!  No dependence on layer widths! 
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Proof sketch: 

Fundamental theorem for line integrals: 

 𝛻𝑔
Γ

= 0    ∀ func 𝑔 , closed curve Γ   

Construct curve on which line integral of end-to-end updates ≠ 0 

Effect of overparameterization by depth cannot  
be attained via any modification of the objective! 
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Experiments – Linear Networks 

Depth can speed up GD, even w/o 
any change in expressiveness, and 
despite introducing non-convexity! 

This speed up can outperform 
explicit acceleration methods 

designed for convex problems! 

Regression problem from UCI ML Repository; ℓ4 loss 

The Effect of Depth Depth vs. Explicit Accelerators 
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Experiments – Non-Linear Network 

TensorFlow CNN tutorial for MNIST 

Overparameterization: fully-connected layers → depth-2 linear nets 

With +15% in params, and no change in expressiveness, 
overparameterization accelerated by orders of magnitude! 
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Conclusion 

• Depth radically changes obj landscape, turns it highly non-convex 

• Conventional wisdom: this complicates optimization 

• We show: 

– For linear nets, depth induces on GD a preconditioning scheme 

– Preconditioning combines adaptive learning rate and “momentum” 

– Effect cannot be attained via any modification of original objective 

– Can lead to significant speed ups, despite no change in expressiveness 
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Thank You 


