International Conference on Machine Learning (ICML) 2018

On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization

Sanjeev Arora™’ Nadav Cohen' Elad Hazan™

“Princeton University YInstitute for Advanced Study iGoogle Brain

How Does Depth Help?

1/9

How Does Depth Help?

Conventional wisdom:
 Depth boosts expressive power

1/9

How Does Depth Help?

Conventional wisdom:
 Depth boosts expressive power

el = BL S
<R [=F |
s '.4435"1 —
.\\ .F4”_;."¥

tembofl il

1/9

How Does Depth Help?

Conventional wisdom:
 Depth boosts expressive power

This work:

Depth can accelerate optimization!

Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study — deeper nets may
seem to optimize faster per being able to reach lower training err

Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study — deeper nets may
seem to optimize faster per being able to reach lower training err

Resolution:

* We focus on models whose expressiveness is oblivious to
depth — linear neural networks

2/9

Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study — deeper nets may
seem to optimize faster per being able to reach lower training err

Resolution:
* We focus on models whose expressiveness is oblivious to
depth — linear neural networks

 Adding layers amounts to replacing matrix param by product
of matrices — overparameterization

2/9

Decoupling Optimization
from Expressiveness

Problem:

Expressiveness can interfere with our study — deeper nets may
seem to optimize faster per being able to reach lower training err

Resolution:
* We focus on models whose expressiveness is oblivious to
depth — linear neural networks

 Adding layers amounts to replacing matrix param by product
of matrices — overparameterization

Linear neural networks were studied extensively, cf. [Saxe et al.
2013; Kawaguchi 2016; Hardt & Ma 2016]

Warm-Up

Training objective for linear regression with £, loss:

L(w) = Z 1 (xTw — y)p

(x,y)ES P

3/9
Warm-Up

Training objective for linear regression with £, loss:

L(w) = Z L (xTw — y)° [convex}

(x,y)€ES p

3/9
Warm-Up

Training objective for linear regression with £, loss:

L(w) = Z L (x"w — y)° [convex}

(x,y)€ES p

Overparameterize — replace vector w by vector w4 times scalar w,:

3 1 .
Liwq,wy) = 2 o~ (xTW1W2 .)’)
(x,y)€ES p

3/9
Warm-Up

Training objective for linear regression with £, loss:

L(w) = Z L (x"w — y)° [convex}

(x,y)€ES p

Overparameterize — replace vector w by vector w4 times scalar w,:

. 1 p
L(wq,wy) = 2 = (xTW1Wz B)’) [non-convex }
(x,y)ES P

3/9
Warm-Up

Training objective for linear regression with £, loss:

L(w) = Z L (x"w — y)° [convex}

(x,y)€ES p

Overparameterize — replace vector w by vector w4 times scalar w,:

. 1 p
L(wq,wy) = 2 = (xTW1Wz B)’) [non-convex }
(x,y)ES P

Claim:

* Gradient descent (GD) over L(wq, w,) induces on w = wqws:

t—1
WD w® — p© L gL (®) - z 0. 7L(w®)
=1

3/9
Warm-Up

Training objective for linear regression with £, loss:

L(w) = z L (x"w — y)° [convex}

(x,y)€ES p

Overparameterize — replace vector w by vector w4 times scalar w,:

. 1 p
L(wq,wy) = 2 = (xTW1Wz B)’) [non-convex }
(x,y)ES P

Claim:

* Gradient descent (GD) over L(wq, w,) induces on w = wqws:

t—1
WD w® — p© L gL (®) - z 0. 7L(w®)
=1

adaptive learning rate

3/9
Warm-Up

Training objective for linear regression with £, loss:

L(w) = z L (x"w — y)° [convex}

(x,y)€ES p

Overparameterize — replace vector w by vector w4 times scalar w,:

. 1 p
L(wq,wy) = 2 = (xTW1Wz B)’) [non-convex }
(x,y)ES P

Claim:

* Gradient descent (GD) over L(wq, w,) induces on w = wqws:

t—1
WD w® — p© L gL (®) - z 0. 7L(w®)
=1

adaptive learning rate “momentum”

3/9
Warm-Up

Training objective for linear regression with £, loss:

L(w) = z L (x"w — y)° [convex}

(x,y)€ES p

Overparameterize — replace vector w by vector w4 times scalar w,:

. 1 p
L(wq,wy) = 2 = (xTW1Wz B)’) [non-convex }
(x,y)ES P

Claim:

* Gradient descent (GD) over L(wq, w,) induces on w = wqws:

t—1
WD w® — p© L gL (®) - z 0. 7L(w®)
=1

adaptive learning rate “momentum”

* Forp > 2, this can speed up optimization

3/9
Warm-Up

Training objective for linear regression with £, loss:

L(w) = z L (x"w — y)° [convex}

(x,y)€ES p

Overparameterize — replace vector w by vector w4 times scalar w,:

. 1 p
L(wq,wy) = 2 = (xTW1W2 B)’) [non-convex }
(x,y)ES P

Claim:

* Gradient descent (GD) over L(wq, w,) induces on w = wqws:

t—1
WD w® — p© L gL (®) - z 0. 7L(w®)
=1

adaptive learning rate “momentum”

* Forp > 2, this can speed up optimization (cf. [Saxe et al. 2013])

Formal Setup

Linear neural network:

X —>

Wy

W,

—> Y

Wy - W, - W, x

4/9

Formal Setup

Linear neural network:

X —>

Wy

W,

— y =1/VN...W2 .lex

~

We

end-to-end weight matrix

4/9

4/9
Formal Setup

Linear neural network:

x9W19W29 """ QWNQ y=WN"‘W2'W1x
N J

Y

We

end-to-end weight matrix

Given loss L over linear model, we have the overparameterized loss:

LWy, -, Wy) = L(W,)

4/9
Formal Setup

Linear neural network:

x9W19W29 """ QWNQ y=WN"‘W2'W1x
N J
Y

We

end-to-end weight matrix

Given loss L over linear model, we have the overparameterized loss:

LWy, -, Wy) = L(W,)

Question:
How does I/, behave during GD over W, ---, Wj?

5/9

Implicit Dynamics of
Gradient Descent

Theorem:

GD over W3, ---, Wy with small learning rate and near-zero init,
induces on I/, the end-to-end update rule:

M/e(t+1) oL [/Ve(t)

N J=1
S [y [ey

J=1

N—Jj

N

5/9

Implicit Dynamics of
Gradient Descent

Theorem:

GD over W3, ---, Wy with small learning rate and near-zero init,
induces on I/, the end-to-end update rule:

M/e(t+1) oL [/Ve(t)
N-j

N J—1 N—j
0y [(1,0 T]N 71 (TG [Wu) TW(w] s
nj:1[e (DY | 71 (.0 |(m.9) w,
which is a:

* preconditioner promoting movement in directions already taken

5/9

Implicit Dynamics of
Gradient Descent

Theorem:

GD over W3, ---, Wy with small learning rate and near-zero init,
induces on I/, the end-to-end update rule:

M/e(t+1) oL Vl/e(t)
N-j

—1
0 [()|) [0]

J=1
which is a:
* preconditioner promoting movement in directions already taken

e certain combination of adaptive learning rate and “momentum”

Implicit Dynamics of
Gradient Descent

Theorem:

GD over W3, ---, Wy with small learning rate and near-zero init,
induces on I/, the end-to-end update rule:

M/e(t+1) oL [/Ve(t)
j—1 N-j

B

J=1
which is a:
* preconditioner promoting movement in directions already taken

e certain combination of adaptive learning rate and “momentum”

Overparameterization with deep linear net induces on GD a
certain acceleration scheme! No dependence on layer widths!

5/9

Overparameterization via
Objective Modification?

Overparameterization via
Objective Modification?

Theorem:

There exists no objective func (of I//,) over which GD gives the
end-to-end update rule

6/9

Overparameterization via
Objective Modification?

Theorem:

There exists no objective func (of I//,) over which GD gives the
end-to-end update rule

Proof sketch:

Fundamental theorem for line integrals:

$. Vg =0 Vfuncg,closedcurvel @

Construct curve on which line integral of end-to-end updates # 0

6/9

Overparameterization via
Objective Modification?

Theorem:

There exists no objective func (of I//,) over which GD gives the
end-to-end update rule

Proof sketch:

Fundamental theorem for line integrals:

$. Vg =0 Vfuncg,closedcurvel @

Construct curve on which line integral of end-to-end updates # 0

Effect of overparameterization by depth cannot
be attained via any modification of the objective!

Experiments — Linear Networks

Regression problem from UCI ML Repository; £, loss

7/9

Experiments — Linear Networks

Regression problem from UCI ML Repository; £, loss

The Effect of Depth

— GD @ 1-layer |
— GD @ 2-layer ||
— GD @ 3-layer |

10°

0 200000 400000 600000 300000 1000000

iteration

7/9
Experiments — Linear Networks

Regression problem from UCI ML Repository; £, loss

The Effect of Depth

— GD @ 1-layer |
— GD @ 2-layer ||
— GD @ 3-layer |

10°

0 200000 400000 600000 300000 1000000

iteration

Depth can speed up GD, even w/o
any change in expressiveness, and
despite introducing non-convexity!

Experiments — Linear Networks

Regression problem from UCI ML Repository; £, loss

The Effect of Depth

— GD @ 1-layer |
— GD @ 2-layer ||
— GD @ 3-layer |]

10°

L4 loss

0 200000 400000 600000 800000 1000000
iteration

Depth can speed up GD, even w/o
any change in expressiveness, and
despite introducing non-convexity!

L4 loss

7/9

Depth vs. Explicit Accelerators

1[]()

— AdaGrad @ 1-layer |]
— AdaDelta @ 1-layer ||

— GD @ 3-layer

200000

400000 600000
iteration

800000

1000000

7/9

Experiments — Linear Networks

Regression problem from UCI ML Repository; £, loss

The Effect of Depth

— GD @ 1-layer |
— GD @ 2-layer ||
— GD @ 3-layer |]

10°

L4 loss

0 200000 400000 600000 800000 1000000
iteration

Depth can speed up GD, even w/o
any change in expressiveness, and
despite introducing non-convexity!

L4 loss

Depth vs. Explicit Accelerators

1[]()

— AdaGrad @ 1-layer |]
— AdaDelta @ 1-layer ||
— GD @ 3-layer]

0 200000 400000 600000 800000 1000000
iteration

This speed up can outperform
explicit acceleration methods
designed for convex problems!

Experiments — Non-Linear Network

TensorFlow CNN tutorial for MNIST

Overparameterization: fully-connected layers - depth-2 linear nets

8/9

Experiments — Non-Linear Network

TensorFlow CNN tutorial for MNIST
Overparameterization: fully-connected layers - depth-2 linear nets

101 . .
al — original
— overparameterized ||

b

10 F

patch loss

0 1000 2000 3000 4000 5000 6000 7000 SO000
iteration

With +15% in params, and no change in expressiveness,
overparameterization accelerated by orders of magnitude!

Conclusion

Conclusion

* Depth radically changes obj landscape, turns it highly non-convex

Conclusion

* Depth radically changes obj landscape, turns it highly non-convex

* Conventional wisdom: this complicates optimization

9/9

Conclusion

 Depth radically changes obj landscape, turns it highly non-convex
* Conventional wisdom: this complicates optimization

e We show:

— For linear nets, depth induces on GD a preconditioning scheme

9/9

Conclusion

 Depth radically changes obj landscape, turns it highly non-convex
* Conventional wisdom: this complicates optimization

e We show:

— For linear nets, depth induces on GD a preconditioning scheme

— Preconditioning combines adaptive learning rate and “momentum”

9/9

Conclusion

 Depth radically changes obj landscape, turns it highly non-convex
* Conventional wisdom: this complicates optimization

e We show:

— For linear nets, depth induces on GD a preconditioning scheme
— Preconditioning combines adaptive learning rate and “momentum”

— Effect cannot be attained via any modification of original objective

9/9

Conclusion

 Depth radically changes obj landscape, turns it highly non-convex
* Conventional wisdom: this complicates optimization

e We show:

— For linear nets, depth induces on GD a preconditioning scheme
— Preconditioning combines adaptive learning rate and “momentum”
— Effect cannot be attained via any modification of original objective

— Can lead to significant speed ups, despite no change in expressiveness

Thank You

