Convolutional Rectifier Networks as Generalized Tensor Decompositions

Nadav Cohen Amnon Shashua

The Hebrew University of Jerusalem

International Conference on Machine Learning (ICML) 2016

Convolutional Rectifier Networks vs. Convolutional Arithmetic Circuits

Convolutional rectifier networks

ConvNets with ReLU activation and max or average pooling

Most successful deep learning architecture to date

Expressive power yet to be analyzed

Convolutional arithmetic circuits

ConvNets with linear activation and product pooling

Equivalent to SimNets ¹, but not as widely used

Expressive power analyzed through tensor decompositions ²

We analyze the expressive power of convolutional rectifier networks by generalizing tensor decompositions

¹Deep SimNets, CVPR'16

²On the Expressive Power of Deep Learning: A Tensor Analysis, COLT'16

Cohen & Shashua (HUJI)

CRN as Generalized Tensor Decompositions

Analyzed ConvNet Architecture

Convolutional network:

- locality
- sharing (optional)
- pooling

 $\sigma(\cdot)$ – point-wise activation

$$P\{\cdot\}$$
 – pooling operator

Activation and Pooling

Three configurations for activation $\sigma(\cdot)$ and pooling $P\{\cdot\}$:

Activation	Pooling	
linear	product	convolutional
$\sigma(z)=z$	$P\{c_j\} = \prod c_j$	arithmetic circuits
	max	
ReLU	$P\{c_j\} = \max\{c_j\}$	convolutional
$\sigma(z) = [z]_+$	average	rectifier networks
	$P\{c_j\} = mean\{c_j\}$	

Activation Pooling Cohen & Shashua (HUJI)

Convolutional Arithmetic Circuits ¹

Function realized by output *y*:

$$h_{y}\left(\mathbf{x}_{1},\ldots,\mathbf{x}_{N}\right)=\sum\nolimits_{d_{1}\ldots d_{N}=1}^{M}\mathcal{A}_{d_{1},\ldots,d_{N}}^{y}\prod\nolimits_{i=1}^{N}f_{\theta_{d_{i}}}(\mathbf{x}_{i})$$

- x₁...x_N input patches
- $f_{\theta_1} \dots f_{\theta_M}$ representation layer functions

• \mathcal{A}^{y} - coefficient tensor (M^{N} entries, polynomials in weights $\mathbf{a}^{I,\gamma}$)

¹On the Expressive Power of Deep Learning: A Tensor Analysis, COLT'16 Cohen & Shashua (HUJI) CRN as Generalized Tensor Decompositions ICML 2016

5 / 13

Shallow Convolutional Arithmetic Circuit ←→ CP (CANDECOMP/PARAFAC) Decomposition

Shallow network (single hidden layer, global pooling):

Coefficient tensor $\mathcal{A}^{\mathcal{Y}}$ given by classic **CP decomposition**:

$$\mathcal{A}^{y} = \sum_{\gamma=1}^{r_{0}} a_{\gamma}^{1,1,y} \cdot \mathbf{a}^{0,1,\gamma} \otimes \mathbf{a}^{0,2,\gamma} \otimes \cdots \otimes \mathbf{a}^{0,N,\gamma}$$

Deep Convolutional Arithmetic Circuit ←→ Hierarchical Tucker Decomposition

Deep network ($L = \log_2 N$ hidden layers, size-2 pooling windows):

Coefficient tensor \mathcal{A}^{y} given by **Hierarchical Tucker decomposition**:

$$\begin{aligned} \phi^{1,j,\gamma} &= \sum_{\alpha=1}^{l_0} a_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha} \\ & \cdots \\ \phi^{l,j,\gamma} &= \sum_{\alpha=1}^{l_{l-1}} a_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha} \\ & \cdots \\ \mathcal{A}^{y} &= \sum_{\alpha=1}^{l_{l-1}} a_{\alpha}^{l,1,y} \cdot \phi^{l-1,1,\alpha} \otimes \phi^{l-1,2,\alpha} \end{aligned}$$

Convolutional Arithmetic Circuits: Expressive Power¹

Universality:

When a network can realize any function given unlimited size

Depth efficiency:

When a function realized by polynomially sized deep network requires shallow networks to have super-polynomial size

Complete depth efficiency:

When all but a negligible (zero measure) set of the functions realizable by a deep network are depth efficient

Claim

Convolutional arithmetic circuits are universal

Theorem

Convolutional arithmetic circuits exhibit complete depth efficiency

¹On the Expressive Power of Deep Learning: A Tensor Analysis, COLT'16

Cohen & Shashua (HUJI)

CRN as Generalized Tensor Decompositions

Generalized Tensor Decompositions

Convolutional arithmetic circuits correspond to tensor decompositions based on tensor product \otimes :

$$(\mathcal{A}\otimes\mathcal{B})_{d_1,...,d_{P+Q}}=\mathcal{A}_{d_1,...,d_P}\cdot\mathcal{B}_{d_{P+1},...,d_{P+Q}}$$

For an associative and commutative operator $g : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, the **generalized tensor product** \otimes_g is defined by:

$$(\mathcal{A} \otimes_{g} \mathcal{B})_{d_{1},...,d_{P+Q}} = g(\mathcal{A}_{d_{1},...,d_{P}}, \mathcal{B}_{d_{P+1},...,d_{P+Q}})$$

(same as \otimes but with g instead of product)

Generalized tensor decompositions are obtained by replacing \otimes with \otimes_g

$\begin{array}{l} \textbf{Generalized Tensor Decompositions} \\ \longrightarrow \textbf{Convolutional Rectifier Networks} \end{array}$

Define the activation-pooling operator:

$$\rho_{\sigma/P}(a,b) := P\{\sigma(a),\sigma(b)\}$$

If $\rho_{\sigma/P}$ is associative and commutative:

Generalized CP decomposition with $\otimes_{\rho_{\sigma/P}}$

Generalized Hierarchical Tucker decomposition with $\otimes_{\rho_{\sigma/P}}$

Shallow ConvNet with activation $\sigma(\cdot)$ and pooling $P\{\cdot\}$ Deep ConvNet with activation $\sigma(\cdot)$ and pooling $P\{\cdot\}$

Example

Convolutional rectifier network with max pooling:

$$\rho_{ReLU/max}(a, b) := \max\{[a]_+, [b]_+\} = \max\{a, b, 0\}$$

Meets the associativity and commutativity requirements

Convolutional Rectifier Networks: Expressive Power

Universality:

Claim

Convolutional rectifier networks are universal with max pooling, but not with average pooling

Depth efficiency:

Claim

Convolutional rectifier networks realize depth efficient functions

Claim

Convolutional rectifier networks do not exhibit complete depth efficiency

Conclusion

Generalized tensor decompositions relate convolutional rectifier networks to convolutional arithmetic circuits, opening door to various mathematical tools

We analyze the expressive power of convolutional rectifier networks:

- Universality holds with max pooling, but not with average pooling
- Depth efficiency exists, but is not complete

	convolutional	convolutional
	rectifier networks	arithmetic circuits
expressive	incomplete	complete
power	depth efficiency	depth efficiency
optimization	well studied	addressed only
methods	and developed	recently ¹

Developing optimization methods for convolutional arithmetic circuits may give rise to an architecture that is provably superior but has so far been overlooked

¹Deep SimNets, CVPR'16

Cohen & Shashua (HUJI) CRN as Generalized Tensor Decompositions

Thank You