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Expressive Efficiency

Key to success of deep networks is their expressiveness

How can this be formally analyzed?

Definition (Expressive Efficiency)

A, B – network archs w/size params rA, rB

We say that A is expressively efficient w.r.t. B if:

Any func realized by B can be realized by A w/at most linear growth

rA ∈ O(rB)

There exist func realized by A requiring B to grow super-linearly

rB ∈ Ω(f (rA)) w/super-linear f (·)
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Connectivity
Existing expressive efficiency analyses focus on the effect of depth

A central aspect of state of the art networks has not been analyzed:

Connectivity

Question of interest
Can modern connectivity schemes lead to expressive efficiency?
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Dilated Convolutional Networks
We focus on dilated ConvNets for sequence data:

time

hidden 
layers

input

output

1D ConvNets; no pooling; dilated (gapped) conv windows

Underlie state of the art models for audio & text (e.g. WaveNet)!

Our main result:

Interconnecting hidden layers of networks with
different dilations can lead to expressive efficiency
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Grid Tensor

T – receptive field of a dilated ConvNet

Network realizes func over T sequence elements:
h(x1, x2, . . . , xT )

Discretize each input xi to vary between finite # of possibilities
=⇒ func h(·) boils down to T -dim lookup table, a.k.a. grid tensor

10-2 0.1 0.2 0.1 10-2 10-310-3

0.1 0.3 0.6 0.3 0.1 10-210-2

0.2 0.6 1.0 0.6 0.2 10-210-2

10-3 10-2 10-2 10-2 10-3 10-410-4

0.1 0.3 0.6 0.3 0.1 10-210-2

10-2 0.1 0.2 0.1 10-2 10-310-3

10-3 10-2 10-2 10-2 10-3 10-410-4

)2x , 1x(h 2D grid tensor

Illustration for T=2:
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Hierarchical Tensor Decompositions
High-dim tensors (arrays) are exponentially large – cannot be used directly
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Hierarchical Tensor Decompositions
High-dim tensors (arrays) are exponentially large – cannot be used directly

May be represented via hierarchical tensor decompositions:

1D tensors
(vectors)

2D tensors
(matrices)

4D tensor

Hier decomp is characterized by tree over tensor modes (axes)
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Dilated Convolutional Networks
←→ Hierarchical Tensor Decompositions
Observation
Grid tensors of func realized by dilated ConvNet adhere to hier decomp

Moreover, there is a correspondence:
dilations across network ←→ mode tree of decomp

dilation-1

dilation-2

dilation-4

dilation-8

dilation-1

dilation-2

dilation-4

dilation-8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mode tree T

mode tree T

dilations scheme D

dilations scheme D
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Mixed Tensor Decompositions

Definition
A mixed tensor decomposition blends mode trees T and T̄ by running
their decomp in parallel, exchanging tensors along the way

exchange 
tensors

mode tree T

mode tree T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

exchange 
tensors
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Mixed Dilated Convolutional Networks
Mixed decomp captures grid tensors of mixed dilated ConvNet, formed
by interconnecting networks of T and T̄

network
of T

network
of T

dilation-1

dilation-2

dilation-8

input

dilation-4

dilation-1

dilation-2

dilation-8

dilation-4

output
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Expressive Efficiency Analysis

Theorem (result on tensor decomp)

Any tensor realized by decomp of T or T̄ can be realized by their
mixed decomp w/at most linear growth
There exist tensors realized by mixed decomp requiring individual
decomp of T and T̄ to grow quadratically

Corollary (implication for dilated ConvNets)

Any func realized by individual network of T or T̄ can be realized by
mixed network w/at most linear growth
There exist func realized by mixed network requiring individual
networks to grow quadratically

Mixed network is expressively efficient w.r.t. individual ones
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Experiment

DeepLab model (Chen et al. 2016) showed that together w/other
techniques, mixing dilated ConvNets can lead to state of the art

Objective: isolate the effect of mixing

Model: 2 networks w/diff dilations; interconnections incrementally added

Task: phoneme recognition on TIMIT (no pre/post-processing)

0 2 4 6 8 10

Connections up to layer

0.68

0.69

0.70

0.71

0.72

A
cc

u
ra

cy

TIMIT Individual Phoneme Classification

Validation Set

Train Set

Results:

Interconnections improve accuracy, with no
overhead in computation or model capacity
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Conclusion

Expressive efficiency: concept formalizing representational superiority

We studied expressive efficiency of connectivity for dilated ConvNets

Analysis shows interconnections can lead to expressive efficiency

Experiment demonstrates gains in accuracy (w/o overheads)
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Final Thought
Expressive efficiency coincides w/improved accuracies in the case of depth

Same holds for connectivity!

Expressive efficiency may be key in developing
new theoretical tools for deep network design
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Thank You
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