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The Expressive Power of Deep Learning

Expressiveness

The driving force behind deep networks is their expressiveness

Fundamental theoretical questions:

What kind of functions can different network architectures represent?

Why are these functions suitable for real-world tasks?

What is the representational benefit of depth?

Can other architectural features deliver representational benefits?
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The Expressive Power of Deep Learning

Expressiveness – Basic Concepts

Universality:
Network can realize any func if its size (width) is unlimited

Efficiency:
Architecture A is efficient w.r.t. architecture B if:
(1) ∀func realized by B w/size rB can be realized by A w/size rA ∈ O(rB)

(2) ∃func realized by A w/size rA requiring B to have size rB ∈ Ω(f (rA)),
where f (·) is super-linear

Complete efficiency:
Set of func realized by A for which (2) does not hold has measure zero

Inductive bias:
Relaxation in requirements, based on assumptions regarding task at hand
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The Expressive Power of Deep Learning

Expressiveness – Prior Works

Existing results:

Prove (universality and) that efficiency of depth exists
Do not provide any information on how frequent it is

Do not consider other forms of efficiency

Do not treat inductive bias

Apply only to fully-connected networks, not the architectures
commonly used in practice (e.g. convolutional networks)

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

X

fully-connected convolutional
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17)

Convolutional Arithmetic Circuits
Convolutional networks – locality, weight sharing, pooling:

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

    0, ,

0 , , ,:jconv j rep j  a

    0 0 '
, ',

j window j
pool j P conv j 




    1 1 ' covers space
',L L j

pool P conv j  

   ,1,

1, :L y

Lout y pool  a

X

σ(·) – point-wise activation P{·} – pooling operator

Convolutional arithmetic circuits are a special case:
linear activation: σ(z) = z
product pooling: P{cj} =

∏
j cj

Computation in log-space leads to SimNets – new deep learning
architecture showing promising empirical performance 1

1Deep SimNets, Cohen-Sharir-Shashua, CVPR’16
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Equivalence to Tensor Decompositions

Tensorial Function Spaces
Represent instances as N-tuples of vectors (“patches”):

X = (x1, . . . , xN) ∈ (Rs)N

Example
32x32 RGB image represented via 5x5 patches around all pixels:

32

ix5

X

32 32 1024N   

5 5 3 75s    

32

3

5
3

# of patches

patch dimension

Let fθ1 . . .fθM : Rs → R be func over patches; denote F := span{fθ1 . . .fθM}

Extension of F from patches to instances:

F⊗N := span
{

(x1, . . . , xN) 7→
∏N

i=1
fθdi

(xi ) : d1. . .dN ∈ [M]
}

(tensor product of F with itself N times)
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Equivalence to Tensor Decompositions

Coefficient Tensors

F⊗N := span
{

(x1, . . . , xN) 7→
∏N

i=1 fθdi
(xi ) : d1. . .dN ∈ [M]

}
General func h(·) ∈ F⊗N can be written as:

h (x1, . . . , xN) =
M∑

d1...dN=1
Ad1,...,dN

N∏
i=1

fθdi
(xi )

where A ∈ RM×···×M is the coefficient tensor of h(·)

Naïve computation of h(·) is intractable – exponential # (MN) of terms!

Can be made tractable by decomposing (approximating) coefficient tensor
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Equivalence to Tensor Decompositions

Computing Functions by Decomposing Coefficient Tensors
h1. . .hY – set of func over instances:

hy (x1, . . . , xN) =
∑M

d1...dN=1
Ay

d1,...,dN

∏N
i=1

fθdi
(xi )

With tensor decompositions applied to {Ay}y , the func {hy (·)}y are
computed by convolutional arithmetic circuits!

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

   
11
...... 1 1N diN

NM y

y d d id d i
h X f 

  x

X

decomposed coefficient tensor

   ,
d irep i d f x

1-1 correspondence between type of tensor decomposition and
structure of network (# of layers, pooling schemes, layer widths etc)
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Equivalence to Tensor Decompositions

CP (CANDECOMP/PARAFAC) Decomposition
←→ Shallow Convolutional Arithmetic Circuit
Classic CP decomposition of coefficient tensors {Ay}y :

Ay =
r0∑
γ=1

a1,1,yγ · a0,1,γ ⊗ a0,2,γ ⊗ · · · ⊗ a0,N,γ︸ ︷︷ ︸
rank-1 tensor

(rank(Ay )≤r0)

corresponds to shallow network (single hidden layer, global pooling):

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix

M 0r 0r Y

   0, ,, , ,:jconv j rep j  a

   
covers space

,
j

pool conv j  
 

 1,1, , :y

out y

pool



a

X
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Equivalence to Tensor Decompositions

Hierarchical Tucker Decomposition
←→ Deep Convolutional Arithmetic Circuit
Hierarchical Tucker decomposition of coefficient tensors {Ay}y :

φ1,j,γ =
∑r0

α=1
a1,j,γα · a0,2j−1,α ⊗ a0,2j,α

· · ·
φl,j,γ =

∑rl−1

α=1
al,j,γ
α · φl−1,2j−1,α ⊗ φl−1,2j,α

· · ·
Ay =

∑rL−1

α=1
aL,1,y
α · φL−1,1,α ⊗ φL−1,2,α

corresponds to deep network (L = log2N hidden layers, size-2 pooling):

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv
pooling

dense 
(output)

hidden layer 0 hidden layer L-1
(L=log2N)

ix

M 0r 0r 1Lr  1Lr  Y

   0, ,

0 , , ,:jconv j rep j  a

   
 

0 0

' 2 1,2

, ',
j j j

pool j conv j 
 

 

   
 

1 1

' 1,2

',L L

j

pool conv j  



 

   ,1

1

, , :L y

Lout y pool  a

X
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Universality and Efficiency of Depth

Universality
Fact:
CP decomposition can realize any tensors {Ay}y given MN terms
Implies:
Shallow network can realize any func (in F⊗N) given MN hidden channels

Fact:
Hierarchical Tucker decomposition is a superset of CP decomposition if
each level has matching number of terms
Implies:
Deep network can realize any func (in F⊗N) given MN channels in each of
its hidden layers

convolutional arithmetic circuits are universal
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Universality and Efficiency of Depth

Efficiency of Depth

Theorem
The rank of tensor Ay given by Hierarchical Tucker decomposition is
exponential (in N) almost everywhere w.r.t. decomposition parameters

Since rank of Ay generated by CP decomposition is no more than the
number of terms (# of hidden channels in shallow network):

Corollary
Almost all functions realizable by deep network cannot be approximated by
shallow network with less than exponentially many hidden channels

w/convolutional arithmetic circuits efficiency of depth is complete!
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Universality and Efficiency of Depth

Efficiency of Depth Theorem – Proof Sketch

JAK – arrangement of tensor A as matrix (matricization)

� – Kronecker product for matrices. Holds: rank(A�B) = rank(A)·rank(B)

Relation between tensor and Kronecker products: JA⊗ BK = JAK� JBK

Implies: A =
∑Z

z=1 λzv(z)
1 ⊗ · · · ⊗ v(z)

2L =⇒ rankJAK≤Z

By induction over l = 1. . .L, almost everywhere w.r.t. {al,j,γ}l,j,γ :

∀j ∈ [N/2l ], γ ∈ [rl ] : rankJφl,j,γK≥ (min{r0,M})
2l/2

Base: “SVD has maximal rank almost everywhere”

Step: rankJA⊗ BK = rank(JAK� JBK) = rankJAK·rankJBK, and
“linear combination preserves rank almost everywhere”
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Inductive Bias

Beyond Efficiency of Depth

Efficiency of depth =⇒
∃func efficiently realizable by deep networks but not by shallow ones

Does not explain why these func are effective:

all functions

functions efficiently 
realizable by deep networks

functions efficiently realizable
by shallow networks

Why are these 
functions 

interesting?

To address this, we must consider the inductive bias of deep architectures
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Inductive Bias

Separation Rank – A Measure of Input Correlations

Partition BPartition A

I -
J -

The separation rank of func h(x1, . . . , xN) w.r.t. partition I ·∪J = [N]:

sep(h; I, J) := min
{
R : ∃g1. . .gR , g ′1. . .g ′R s.t.

h(x1, . . . , xN) =
∑R

ν=1
gν((xi )i∈I)·g ′ν ((xj)j∈J)

}
sep(h; I, J) = 1 =⇒ no interaction between (xi )i∈I and (xj)j∈J

sep(h; I, J) ↗ =⇒ more interaction between (xi )i∈I and (xj)j∈J
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Inductive Bias

Separation Ranks of Convolutional Arithmetic Circuits

Let:
hy – func realized by convolutional arithmetic circuit

Ay – its coefficient tensor

Denote:

JAy KI,J – matricization of Ay according to partition I ·∪J = [N]

Claim
sep(hy ; I, J) = rankJAy KI,J

We thus study correlations modeled by convolutional arithmetic circuits
through ranks of matricized coefficient tensors
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Inductive Bias

Shallow Separation Ranks
Shallow convolutional arithmetic circuit (CP decomposition):

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix

M 0r 0r Y

   0, ,, , ,:jconv j rep j  a

   
covers space

,
j

pool conv j  
 

 1,1, , :y

out y

pool



a

X

Claim
rankJAy KI,J≤r0

shallow network only realizes separation
ranks (correlations) linear in its size
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Inductive Bias

Deep Separation Ranks
Deep convolutional arithmetic circuit (Hierarchical Tucker decomposition):

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv
pooling

dense 
(output)

hidden layer 0 hidden layer L-1
(L=log2N)

ix

M 0r 0r 1Lr  1Lr  Y

   0, ,

0 , , ,:jconv j rep j  a

   
 

0 0

' 2 1,2

, ',
j j j

pool j conv j 
 

 

   
 

1 1

' 1,2

',L L

j

pool conv j  



 

   ,1,

1, :L y

Lout y pool  a

X

Theorem
Maximal rank that JAy KI,J can take is:

Exponential (in N) for “interleaved” partitions
Polynomial (in network size) for “coarse” partitions

deep network realizes exponential separation ranks (correlations)
for favored partitions, polynomial (in network size) for others
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Convolutional Arithmetic Circuits (COLT’16, ICLR’17) Inductive Bias

Inductive Bias through Pooling Geometry
contiguous pooling local correlations

alternative pooling alternative correlations

deep network’s pooling geometry determines which input patterns can
have high separation ranks (correlations), thus controls inductive bias
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Convolutional Rectifier Networks (ICML’16)

From Convolutional Arithmetic Circuits
to Convolutional Rectifier Networks

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

    0, ,

0 , , ,:jconv j rep j  a

    0 0 '
, ',

j window j
pool j P conv j 




    1 1 ' covers space
',L L j

pool P conv j  

   ,1,

1, :L y

Lout y pool  a

X

Transform convolutional arithmetic circuits into convolutional rectifier networks:

linear activation −→ ReLU activation: σ(z) = max{z , 0}

product pooling −→ max/average pooling: P{cj} = max{cj}/mean{cj}

Most successful deep learning architecture to date!
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Convolutional Rectifier Networks (ICML’16) Equivalence to Generalized Tensor Decompositions
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Convolutional Rectifier Networks (ICML’16) Equivalence to Generalized Tensor Decompositions

Generalized Tensor Decompositions

Convolutional arithmetic circuits correspond to tensor decompositions
based on tensor product ⊗:

(A⊗ B)d1,...,dP+Q
= Ad1,...,dP · BdP+1,...,dP+Q

For an operator g : R× R→ R, the generalized tensor product ⊗g :

(A⊗g B)d1,...,dP+Q
:= g(Ad1,...,dP ,BdP+1,...,dP+Q )

(same as ⊗ but with g(·) instead of multiplication)

Generalized tensor decompositions are obtained by replacing ⊗ with ⊗g
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Convolutional Rectifier Networks (ICML’16) Equivalence to Generalized Tensor Decompositions

Convolutional Rectifier Networks
←→ Generalized Tensor Decompositions

Define the activation-pooling operator:

ρσ/P(a, b) := P{σ(a), σ(b)}

Convolutional rectifier networks are equivalent to generalized tensor
decompositions with g(·) ≡ ρσ/P(·):

Shallow network ←→ Generalized CP decomposition

Deep network ←→ Generalized Hierarchical Tucker decomposition
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Convolutional Rectifier Networks (ICML’16) Universality and Efficiency of Depth
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Convolutional Rectifier Networks (ICML’16) Universality and Efficiency of Depth

Results

Universality:

Claim
Convolutional rectifier networks are universal with max pooling,
but not with average pooling

Efficiency of depth:

Claim
With convolutional rectifier networks efficiency of depth exists,
but it is not complete

expressiveness of convolutional rectifier networks
inferior to that of convolutional arithmetic circuits!
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Dilated Convolutional Networks (arXiv’17)
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Dilated Convolutional Networks (arXiv’17)

Connectivity

To date, only efficiency of depth was treated

This overlooks architectural feature of connectivity, present in nearly all
state of the art networks

DenseNet Inception (GoogLeNet) ResNet

We study efficiency of connectivity in dilated convolutional networks –
state of the art in audio and text processing tasks
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Dilated Convolutional Networks (arXiv’17)

Baseline Dilated Convolutional Network

size-2 conv:
dilation-1

size-2 conv:
dilation-2

size-2 conv:
dilation-2L-1

Time
t-2L+1 t+1

L-1 
hidden 
layers

N:=2L time points

input

output

0r

1r

2r

1Lr 

Lr

tt-1t-2t-3t-2L+2t-2L

   1 1, ,I 1, ,II[ ] , [ 1] , , [ ]h t g t t 

  a x a x

    1 1,y,I 1 , ,II[ ] , [ 2 ] , , [ ]
L LL L L y

yo t g t t
  a h a h

      2 1 12, ,I 2, ,II[ ] , [ 2] , , [ ]h t g t t 

  a h a h

1D convolutional network with:
dilation (gap) 2l−1 in layer l = 1, . . . , L
no pooling

Underlies Google’s WaveNet – state of the art in audio processing
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Dilated Convolutional Networks (arXiv’17) Mode Trees and Dilations

Baseline Mode Tree
Baseline network corresponds to Hierarchical Tucker decomposition:

φ1,j,γ =
∑r0

α=1
a1,j,γα · a0,2j−1,α ⊗ a0,2j,α

· · ·
φl,j,γ =

∑rl−1

α=1
al,j,γ
α · φl−1,2j−1,α ⊗ φl−1,2j,α

· · ·
Ay =

∑rL−1

α=1
aL,1,y
α · φL−1,1,α ⊗ φL−1,2,α

which adheres to a particular mode tree (tree over tensor modes):

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,2} {3,4} {5,6} {15,16}{7,8} {9,10} {11,12} {13,14}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
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Dilated Convolutional Networks (arXiv’17) Mode Trees and Dilations

Different Mode Trees ←→ Different Dilations

Changing underlying mode tree gives decompositions corresponding to
networks with different dilations:

dilation-1

dilation-2

dilation-4

dilation-8

dilation-1

dilation-2

dilation-4

dilation-8

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,2} {3,4} {5,6} {15,16}{7,8} {9,10} {11,12} {13,14}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,3} {2,4} {5,7} {14,16}{6,8} {9,11} {10,12} {13,15}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,9,10,11,12} {5,6,7,8,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

Baseline

Alternative
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Dilated Convolutional Networks (arXiv’17) Mixing Decompositions and Networks
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Dilated Convolutional Networks (arXiv’17) Mixing Decompositions and Networks

Mixed Tensor Decompositions
T , T̄ – two mode trees ; mix(T , T̄ ) – set of nodes present in both trees

mix(T,T)mode tree T

mode tree T

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,2} {3,4} {5,6} {15,16}{7,8} {9,10} {11,12} {13,14}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,3} {2,4} {5,7} {14,16}{6,8} {9,11} {10,12} {13,15}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,9,10,11,12} {5,6,7,8,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

A mixed tensor decomposition blends together T and T̄ by running their
decompositions in parallel, exchanging tensors in each node of mix(T , T̄ )
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Dilated Convolutional Networks (arXiv’17) Mixing Decompositions and Networks

Mixed Dilated Convolutional Networks
Mixed tensor decomposition corresponds to mixed dilated convolutional
network, formed by interconnecting the networks of T and T̄ :

network
of T

network
of T

dilation-1

dilation-2

dilation-8

input

dilation-4

dilation-1

dilation-2

dilation-8

dilation-4

output
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Dilated Convolutional Networks (arXiv’17) Efficiency of Interconnectivity
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Dilated Convolutional Networks (arXiv’17) Efficiency of Interconnectivity

Hybrid Mode Trees

Mode trees T and T̄ give rise to an exponential # of hybrid mode trees

mode tree T mode tree T

hybrid mode trees

mix(T,T)

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,2} {3,4} {5,6} {15,16}{7,8} {9,10} {11,12} {13,14}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,3} {2,4} {5,7} {14,16}{6,8} {9,11} {10,12} {13,15}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,9,10,11,12} {5,6,7,8,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {9} {10} {11} {12}

{1,2} {3,4} {9,10} {11,12}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,2} {3,4} {5,6} {15,16}{7,8} {9,10} {11,12} {13,14}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16}

{1,3} {2,4} {5,7} {14,16}{6,8} {9,11} {10,12} {13,15}

{1,2,3,4} {5,6,7,8} {9,10,11,12} {13,14,15,16}

{1,2,3,4,9,10,11,12} {5,6,7,8,13,14,15,16}

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

{5} {6} {7} {8}

{5,7} {6,8}

{13} {14} {15} {16}

{14,16}{13,15}

Nadav Cohen (Hebrew U.) On the Expressive Power of Deep Learning GAMM 2017 Minisymposium 43 / 47



Dilated Convolutional Networks (arXiv’17) Efficiency of Interconnectivity

Results

Claim
Any tensor generated by decomposition of a hybrid mode tree can be
realized by mixed decomposition with no more than linear growth in size

Theorem
There exist hybrid mode trees whose decompositions generate tensors
requiring those of T and T̄ to grow at least quadratically

This implies:
Corollary
Mixed dilated convolutional network is efficient w.r.t. networks of T and T̄

interconnectivity leads to expressive efficiency!
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Conclusion

Convolutional networks ←→ tensor decompositions:
arithmetic circuits ←→ standard decompositions

rectifier networks ←→ generalized decompositions

interconnected networks ←→ mixed decompositions

Equivalence used to analyze expressiveness:
Universality

Efficiency of depth

Inductive bias: pooling geometry determines modeled correlations

Efficiency of interconnectivity

Future work: use equivalence to analyze generalization/optimization
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Thank You
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