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The Expressive Power of Deep Learning

Expressive power of depth – the driving force behind Deep Learning

Depth efficiency: when a polynomially sized deep network realizes a
function that requires shallow networks to have super-polynomial size

Prior works on depth efficiency:

Show its existence, without discussing how frequent it is

Do not apply to convolutional networks (locality+sharing+pooling),
the most successful deep learning architecture to date
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Convolutional Arithmetic Circuits
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Convolutional networks:

locality

sharing (optional)

product pooling

Computation in log-space leads to SimNets – new deep learning
architecture showing promising empirical performance 1

1Deep SimNets, CVPR’16
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Convolutional Arithmetic Circuits (cont’)
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Function realized by output y :

hy (x1, . . . , xN) =
M∑

d1...dN=1
Ay

d1,...,dN

N∏
i=1

fθdi
(xi)

x1. . .xN – input patches

fθ1 . . .fθM – representation layer functions

Ay – coefficient tensor (MN entries, polynomials in weights al ,j,γ)
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Shallow Network ↔ CP Decomposition
Shallow network (single hidden layer, global pooling):
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Coefficient tensor Ay given by classic CP decomposition:

Ay =
r0∑
γ=1

a1,1,y
γ · a0,1,γ ⊗ a0,2,γ ⊗ · · · ⊗ a0,N,γ︸ ︷︷ ︸

rank-1 tensor

(rank(Ay )≤r0)
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Deep Network ↔ Hierarchical Tucker Decomposition
Deep network (L = log2 N hidden layers, size-2 pooling windows):
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Coefficient tensor Ay given by Hierarchical Tucker decomposition:

φ1,j,γ =
∑r0

α=1
a1,j,γ
α · a0,2j−1,α ⊗ a0,2j,α

· · ·
φl,j,γ =

∑rl−1

α=1
al,j,γ
α · φl−1,2j−1,α ⊗ φl−1,2j,α

· · ·
Ay =

∑rL−1

α=1
aL,1,y
α · φL−1,1,α ⊗ φL−1,2,α
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Theorem of Network Capacity

Theorem
The rank of tensor Ay given by Hierarchical Tucker decomposition is at
least min{r0,M}N/2 almost everywhere w.r.t. decomposition parameters.

Since rank of Ay generated by CP decomposition is no more than the
number of terms (# of hidden channels in shallow network):

Corollary
Randomizing linear weights of deep network by a continuous distribution
gives functions that with probability one, cannot be approximated by
shallow network with less than min{r0,M}N/2 hidden channels.

Depth efficiency holds almost always!
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Theorem of Network Capacity – Proof Sketch

JAK – arrangement of tensor A as matrix (matricization)

� – Kronecker product for matrices. Holds: rank(A�B) = rank(A)·rank(B)

Relation between tensor and Kronecker products: JA⊗ BK = JAK� JBK

Implies: A =
∑Z

z=1 λzv(z)
1 ⊗ · · · ⊗ v(z)

2L =⇒ rankJAK≤Z

By induction over l = 1. . .L, almost everywhere w.r.t. {al,j,γ}l,j,γ :

∀j ∈ [N/2l ], γ ∈ [rl ] : rankJφl,j,γK≥ (min{r0,M})
2l/2

Base: “SVD has maximal rank almost everywhere”

Step: rankJA⊗ BK = rank(JAK� JBK) = rankJAK·rankJBK, and
“linear combination preserves rank almost everywhere”
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Generalization

Comparison between arbitrary depths shows penalty in resources grows
double exponentially w.r.t. number of layers cut off.
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Conclusion

Through tensor decompositions, we showed that depth efficiency holds
almost always with convolutional arithmetic circuits

Equivalence between convolutional networks and tensor decompositions
has many other applications, for example:

Expressiveness of convolutional ReLU networks: 1

Average pooling leads to loss of universality

Depth efficiency exists but does not hold almost always

Inductive bias of convolutional arithmetic circuits: 2

Deep networks can model strong correlation between input elements,
shallow networks can’t

Pooling geometry of a deep network selects supported correlations

1Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML’16
2Inductive Bias of Deep Convolutional Networks through Pooling Geometry, arXiv
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Thank You
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