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Deep Learning

EVERY INDUSTRY WANTS DEEP LEARNING

Cloud Service Provider Medicine Media & Entertainment Security & Defense Autonomous Machines

> Image/Video classification > Cancer cell detection > Video captioning > Face recognition > Pedestrian detection

> Speech recognition > Diabetic grading > Content based search > Video surveillance > Lane tracking

> Natural language processing > Drug discovery > Real time translation > Cyber security > Recognize traffic sign
<nviDIA

Source

NVIDIA (www.slideshare.net/openomics/the-revolution-of-deep-learning)
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www.slideshare.net/openomics/the-revolution-of-deep-learning

Limited Formal Understanding

M IT Intelligent Machines

Technology
Review The Dark Secret at the
Sterious Machines Heart of Al

No one really knows how the most advanced algorithms do
what they do. That could be a problem.

by WillKnight  April 11,2017

astyear,asti If: the quiet
L roads of Monmouth County, New Jersey. The experimental

vehicle, developed by researchers at the chip maker Nvidia,

didn’t look different from other autonomous cars, but it was unlike

anything demonstrated by Google, Tesla, or General Motors, and it

showed the rising power of artificial intelligence. The car didn’t follow a

single instruction provided by an engineer or programmer. Instead, it

Artifi intelligenceis a . .

black box that thinks inways relied entirely on an algorithm that had taught itself to drive by
don'tunderstand. That's . X

thrilling and scary. p. 54 watching a human do it.
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DL Theory: Expressiveness, Generalization & Optimization

Outline

o Deep Learning Theory: Expressiveness, Generalization and Optimization

Nadav Cohen ( Expressiveness in DL via QE From QC to QC, Sep'19 6 /48



DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup
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DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)
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DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)

Y — label space (e.g. R for regression or {1,..., k} for classification)
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DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)
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DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)
Y — label space (e.g. R for regression or {1,..., k} for classification)
D — distribution over X x Y (unknown)

0:YxY — Rsg — loss func (e.g. U(y,9) = (y — §)? for Y = R)
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DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)
Y — label space (e.g. R for regression or {1,..., k} for classification)
D — distribution over X x Y (unknown)

0:YxY — Rsg — loss func (e.g. U(y,9) = (y — §)? for Y = R)

Task
Given training set S = {(Xj, yi)}; drawn i.i.d. from D, return hypothesis
(predictor) h: X — Y that minimizes population loss:

Lp(h) == E(x,yy~pll(y; h(X))]

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep'19 7 /48



DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup

X — instance space (e.g. R09%100 for 100-by-100 grayscale images)
Y — label space (e.g. R for regression or {1,..., k} for classification)
D — distribution over X x Y (unknown)

0:YxY — Rsg — loss func (e.g. U(y,9) = (y — §)? for Y = R)

Task
Given training set S = {(Xj, yi)}; drawn i.i.d. from D, return hypothesis
(predictor) h: X — Y that minimizes population loss:

Lp(h) == E(x,yy~pll(y; h(X))]

Approach
Predetermine hypotheses space H C Y%, and return hypothesis h € H

that minimizes empirical loss:
m

Ls(h) = =37 by h(X0)
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DL Theory: Expressiveness, Generalization & Optimization

Three Pillars of Statistical Learning Theory:

Expressiveness, Generalization and Optimization

/ YV (all functions) *\

7 (hypotheses space) °
hp

he
([ ]

S /

f5y — ground truth (minimizer of population loss over all func)

[ Jmy|

h3, — optimal hypothesis (minimizer of population loss over H)
h& — empirically optimal hypothesis (minimizer of empirical loss over )

h — returned hypothesis

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep'19 8 /48



DL Theory: Expressiveness, Generalization & Optimization

Three Pillars of Statistical Learning Theory:

Expressiveness, Generalization and Optimization

/ YV (all functions) *\

7 (hypotheses space)

o
hp/
Approximation Error

(Expressiveness)

S /

f5y — ground truth (minimizer of population loss over all func)

he
([ ]

[ Jmy|

h3, — optimal hypothesis (minimizer of population loss over H)
h& — empirically optimal hypothesis (minimizer of empirical loss over )

h — returned hypothesis

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep'19 8 /48
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Three Pillars of Statistical Learning Theory:

Expressiveness, Generalization and Optimization
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i (/
@< Estimation Error
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Approximation Error

(Expressiveness)
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DL Theory: Expressiveness, Generalization & Optimization

Three Pillars of Statistical Learning Theory:

Expressiveness, Generalization and Optimization

/ YV (all functions) *\

7 (hypotheses space)
hp

/0
Approximation Error

*
" hs(/ Expressiveness
D(_%. Estimation Error (Exp )
Training Error (Generalization)

(Optimization)
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f5y — ground truth (minimizer of population loss over all func)
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning

o Euclidean instance/label spaces: X = RY, Y = R*

e Linear hypotheses space: H = {x +— Wx: W € Rk9}

fa)
g

0 5 10

Least Squares Support Vector
Regression Machine
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning — Three Pillars

Y7 (all functions)

0

7 (hypotheses space)

°
e
i /
h*(/ Approximation Error
h S, Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning — Three Pillars

Y7 (all functions)

0

7 (hypotheses space)

°
e
i /
h*/ Approximation Error
h S Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a convex program:

h = h% ( training err ~ 0 )
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning — Three Pillars

Y7 (all functions)
7 (hypotheses space)

0

°
e
i /
h*/ Approximation Error
h S Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a convex program:

h = h% ( training err ~ 0 )
Expressiveness & Generalization
Bias-variance trade-off:

H approximation err | estimation err

expands ¢ ya
shrinks N e
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning — Three Pillars

Y7 (all functions)

0

/.
= Approximation Error

(Expressiveness)

Training Error
(Optimization)

Optimization
Empirical loss minimization is a convex program:

h = h% ( training err ~ 0 )
Expressiveness & Generalization
Bias-variance trade-off:

H approximation err | estimation err
expands ¢ ya
shrinks a hV
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning

e Euclidean instance/label spaces

e Composite (non-linear) hypotheses space

Fully-Connected Networks
[

Recurrent Networks

AA

@ output layer
7
ST IS
A IS5
RO =
/)‘ “"" . hidden layer =™
AN .//\\ . output layer
input layer () inputiayer
hidden layer 1~ hidden layer 2

Convolutional Networks

input image

feature maps feature maps feature maps feature maps
(256x256)

(256x256)  (128x128)  (128x128)  (64x64) output

category

fully
| connected |

| layer
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars

Y7 (all functions)

0
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°
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Training Error (Generalization)
(Optimization)
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars
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0

7 (hypotheses space)

°
e
i /
h*/ Approximation Error
h S Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a non-convex program:

Nadav Cohen Expressiveness in DL via QE From QC to QC, Sep'19



DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars

Y7 (all functions)
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Optimization
Empirical loss minimization is a non-convex program:
@ hg is not unique — many hypotheses have low training err
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars

Y7 (all functions)

0

7 (hypotheses space)

°
e
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h*/ Approximation Error
h S Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a non-convex program:
@ hg is not unique — many hypotheses have low training err

o Gradient descent (GD) somehow reaches one of these
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars

Y7 (all functions)

0

7 (hypotheses space)

°
e
i /
h*/ Approximation Error
h S Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a non-convex program:
@ hg is not unique — many hypotheses have low training err
o Gradient descent (GD) somehow reaches one of these

Expressiveness & Generalization
Vast difference from classical ML:
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars

Y7 (all functions)

0

7 (hypotheses space)

°
h*
i /
h* Approximation Error
h .S . (Expressiveness)
° Estimation Error

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a non-convex program:

@ hg is not unique — many hypotheses have low training err

o Gradient descent (GD) somehow reaches one of these
Expressiveness & Generalization
Vast difference from classical ML:

@ Some low training err hypotheses generalize well, others don’t
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars

Y7 (all functions)

0

7 (hypotheses space)

°
h*
i /
h* Approximation Error
h .S . (Expressiveness)
° Estimation Error

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a non-convex program:
@ hg is not unique — many hypotheses have low training err
o Gradient descent (GD) somehow reaches one of these
Expressiveness & Generalization
Vast difference from classical ML:
@ Some low training err hypotheses generalize well, others don’t
e W/typical data, solution returned by GD often generalizes well
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars

Y7 (all functions)

0

7 (hypotheses space)
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e
i /
h*/ Approximation Error
h S Expressiveness;
t‘ @< Estimation Error (Exp )

Training Error (Generalization)
(Optimization)

Optimization
Empirical loss minimization is a non-convex program:
@ hg is not unique — many hypotheses have low training err
o Gradient descent (GD) somehow reaches one of these
Expressiveness & Generalization
Vast difference from classical ML:
@ Some low training err hypotheses generalize well, others don’t
e W/typical data, solution returned by GD often generalizes well

@ Expanding H reduces approximation err, but also estimation err!

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep'19

12 /48



DL Theory: Expressiveness, Generalization & Optimization

Deep Learning — Three Pillars
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Convolutional Networks as Tensor Networks

Outline

© Convolutional Networks as Tensor Networks
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Convolutional Networks as Tensor Networks

Convolutional Networks

Most successful deep learning arch to date!

Classic structure:

inputimage  feature maps feature maps feature maps feature maps
(256x256) (256x256) (128x128)  (128x128) (64x64) output

fully
L layer L layer 1 layer 1 layer | connected |

Modern variants:

e s e e dserd|
ANANAAAA=

Traditionally used for images/video, nowadays for audio/text as well
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Convolutional Networks as Tensor Networks

Coefficient Tensor

ConvNets realize func over many local elements (e.g. pixels)
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Convolutional Networks as Tensor Networks

Coefficient Tensor

ConvNets realize func over many local elements (e.g. pixels)

Let H = span{f:(x)}™, be Hilbert space of func over single element
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Convolutional Networks as Tensor Networks

Coefficient Tensor

ConvNets realize func over many local elements (e.g. pixels)
Let H = span{f:(x)}™, be Hilbert space of func over single element

Tensor product H®V is then Hilbert space of func over N elements
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Convolutional Networks as Tensor Networks
Coefficient Tensor

ConvNets realize func over many local elements (e.g. pixels)
Let H = span{f:(x)}™, be Hilbert space of func over single element

Tensor product H®V is then Hilbert space of func over N elements

Any h(-) € H®N can be written as:

h(xl,...,xN): Z »Adl dNHfd )— A’F(Xl,... N))
dp...dy=1
where:
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Convolutional Networks as Tensor Networks
Coefficient Tensor

ConvNets realize func over many local elements (e.g. pixels)
Let H = span{f:(x)}™, be Hilbert space of func over single element

Tensor product H®V is then Hilbert space of func over N elements

Any h(-) € H®N can be written as:

h(xl,...,xN): Z »Adl dNHfd )— A’F(Xl,... N))
dp...dy=1
where:

@ F(xi,...,xy) — product (rank-1) tensor, depends only on input
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Convolutional Networks as Tensor Networks
Coefficient Tensor

ConvNets realize func over many local elements (e.g. pixels)
Let H = span{f:(x)}™, be Hilbert space of func over single element

Tensor product H®V is then Hilbert space of func over N elements

Any h(-) € H®N can be written as:

h(xl,...,xN): Z »Adl dNHfd )— A’F(Xl,... N))
dp...dy=1
where:

@ F(xi,...,xy) — product (rank-1) tensor, depends only on input

e A — coefficient tensor, fully determines func h(-)
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Convolutional Networks as Tensor Networks

Tensor Networks

In quantum physics, high-order tensors are simulated via:
Tensor Networks

rm

R S aad
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Convolutional Networks as Tensor Networks

Tensor Networks

In quantum physics, high-order tensors are simulated via:
Tensor Networks

- R~
R
R S AREad
Tensor Networks (TN):

@ Graphs in which: vertices +— tensors edges «— modes

scalar vector matrix order-3 tensor

O —O —O0— *(P*
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Convolutional Networks as Tensor Networks

Tensor Networks

In quantum physics, high-order tensors are simulated via:
Tensor Networks

- R~
R
R S AREad
Tensor Networks (TN):

@ Graphs in which: vertices +— tensors edges «— modes

scalar vector matrix order-3 tensor

O —O —O0— *ﬁ)*

e Edge (mode) connecting two vertices (tensors) represents contraction

inner-product matrix g ohted b
between vectors multiplication edges weighted by
0—@ —0—O0— mode dimensions
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Convolutional Networks as Tensor Networks

Tree Tensor Network —— Convolutional Arithmetic Circuit

h(Xl,...,XN):< \f}/ ’ ]:(xla-"axN) >

coeff tensor input product tensor

Coeff tensor A is exponential (in # of input elements N)

— directly computing general func is intractable
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Convolutional Networks as Tensor Networks

Tree Tensor Network —— Convolutional Arithmetic Circuit

h(Xl,...,XN):< \f}/ ’ ]:(xla-"axN) >

coeff tensor input product tensor

Coeff tensor A is exponential (in # of input elements N)

— directly computing general func is intractable

Observation

Decomposing coeff tensor w/tree TN gives ConvNet w/linear activation
and product pooling — Convolutional Arithmetic Circuit (ConvAC)!
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Convolutional Networks as Tensor Networks

Tree Tensor Network —— Convolutional Arithmetic Circuit

h(Xl,...,XN):< \f}/ ’ ]:(xla-"axN) >

coeff tensor input product tensor

Coeff tensor A is exponential (in # of input elements N)

— directly computing general func is intractable

Observation

Decomposing coeff tensor w/tree TN gives ConvNet w/linear activation
and product pooling — Convolutional Arithmetic Circuit (ConvAC)!

TN topology <+—  ConvAC arch

TN tensors +— ConvAC weights
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Convolutional Networks as Tensor Networks
Example 1: Shallow Model

h(xl,...,xN):< \./L ‘ F(x1,...,Xn) >

coeff tensor input product tensor

W /star TN applied to coeff tensor:

delta tensor:

1 i=iy=i =
50, otherwise
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Convolutional Networks as Tensor Networks

Example 1: Shallow Model

hx o) = (A | Fla,xw) )
~— —_—
coeff tensor input product tensor

W /star TN applied to coeff tensor:

delta tensor:

=1,

= =

3

, otherwise

func is computed by shallow ConvAC (single hidden layer, global pooling):

_input X representatlon 1x1conv

e ﬂ,___’. global dense
ﬂ pooling = (output)
———-}.
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Convolutional Networks as Tensor Networks

Example 2: Deep Model

h(xl,...,xN):< \./L ‘ F(x1,...,%Xn) >

coeff tensor input product tensor

W /binary tree TN applied to coeff tensor:

dy da d3 dy ds de -+ dy
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Convolutional Networks as Tensor Networks

Example 2: Deep Model

h(xl,...,xN):< \./L ‘ F(x1,...,Xn) >

coeff tensor input product tensor

W /binary tree TN applied to coeff tensor:

dy do ds dy ds dg - dx
func is computed by deep ConvAC (size-2 pooling windows):

input X representation 1x1 conv

/‘ pooling
j e 1x1 conv . dense
pooling
X, > (output)
) ) - -3
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Convolutional Networks as Tensor Networks

Example 3: Deep Model with Overlaps

h(xl,...,xN):< \/L ‘ F(x1,...,%Xn) >

coeff tensor input product tensor

W/"duplicated” tree TN applied to coeff tensor:

£\
O

12123 12123234 12123 1212323412323434 1212323412323434 23434 12323434 23434
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Convolutional Networks as Tensor Networks

Example 3: Deep Model with Overlaps

h(xl,...,xN):< \/L ‘ F(x1,...,Xn) >

coeff tensor input product tensor

W/"duplicated” tree TN applied to coeff tensor:
O

/N
®

V/t =

12123 12123234 12123 1212323412323434 1212323412323434 23434 12323434 23434

func is computed by deep ConvAC w/overlaps:

BxB conv BxB conv

input X representation BxB conv
global dense

°
X, A g e o o pooling  (output)
” *Tﬁam/ - ) ) 55
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Expressiveness of Convolutional Networks

Outline

© Expressiveness of Convolutional Networks
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Expressiveness of Convolutional Networks
Expressiveness

/ V7 (all functions) *\

f
77 (hypotheses space) Z

®
Approximation Error

(Expressiveness)

S /

55 — ground truth

he
([ ]

[ Iyl

h1, — optimal hypothesis
hg — empirically optimal hypothesis

h — returned hypothesis
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Outline

© Expressiveness of Convolutional Networks
@ Dependencies as Quantum Entanglement
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Modeling Dependencies in Data

ConvNets realize func over many local elements (e.g. pixels)
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Modeling Dependencies in Data

ConvNets realize func over many local elements (e.g. pixels)

Key property of such func:

dependencies modeled between sets of input elements

Modeling strong dependence between

. L Less important here
| and blue pixels is important here P

P

Partition A Partition B
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Modeling Dependencies in Data

ConvNets realize func over many local elements (e.g. pixels)

Key property of such func:

dependencies modeled between sets of input elements

Modeling strong dependence between
and blue pixels is important here

Less important here

P

Partition A Partition B

Q: What kind of dependencies do ConvNets model?
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Modeling Dependencies in Data

ConvNets realize func over many local elements (e.g. pixels)

Key property of such func:

dependencies modeled between sets of input elements

Modeling strong dependence between
and blue pixels is important here

Less important here

P

Partition A Partition B

Q: What kind of dependencies do ConvNets model?

Q: How do these relate to network arch?

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep'19
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Quantum Entanglement
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement

In quantum physics, particle is represented as vec in Hilbert space:

M
article state) = a4 - cH
Ip ) Zd:l d - |ta)
coeff  basis
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement

In quantum physics, particle is represented as vec in Hilbert space:

M

article state) = a4 - cH
Ip ) Zd:l d - |ta)
coeff  basis

System of N particles is represented as vec in tensor product space:

M
|system state) = Zdl...d,\,zl Adydy |Vay) @+ @ [hgy) € HeN

coeff tensor

From QC to QC, Sep'19 25 / 48
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement

In quantum physics, particle is represented as vec in Hilbert space:

M

article state) = a4 - cH
Ip ) Zd:l d - |ta)
coeff  basis

System of N particles is represented as vec in tensor product space:
M
— QN
|system state) = » o Adydy ~Vd) @+ @ [thg,) €H

coeff tensor

Quantum entanglement quantifies “dependencies” that system state
models between sets of particles

25 / 48
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

M
|system state) = Zdl...szl Ady...dy |V )®- - -®|ay)
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

M
|system state) = Zdl...d,\,:l Ady...dy |V )®- - -®|ay)

e W |

-Z'C

Consider partition of particles into sets 7 and Z¢
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

M
|system state) = Zdl...szl Ady...dy |V )®- - -®|ay)

e W |

-Z'C

Consider partition of particles into sets 7 and Z¢

[A]lz — matricization of coeff tensor A w.r.t. Z:
@ arrangement of A as matrix

@ rows/cols correspond to modes indexed by Z/Z¢
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

e |

ZC

Adl...dN . |77Z)d1> ® ® |de> [[A]]I — matricization

M
|system state) = Z of Aw.rt. 7

dy...dy=1
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

e |

ZC

Adl...dN . |77Z)d1> ® ® |de> [[A]]I — matricization

M
|system state) = Z of Aw.rt. 7

dy...dy=1

o = (01,02,...,0r) — singular vals of [A]z
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

1 2 3 N-1 N
A 7°
_ M Allz — matricization
|system state) = Zd1“.d,\,:1 Adidn - |0a) @+ @ |thay) [ ]]of e
o = (01,02,...,0r) — singular vals of [A]z

Entanglement measures between particles of Z and of Z¢ are based on o:

From QC to QC, Sep'19 27 / 48
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

N-1 N

1 2 3
A 7°
_\\M . [A]z — matricization
system state) = 3 A ) O @y | | Mz~ matricizz
o = (01,02,...,0r) — singular vals of [A]z

Entanglement measures between particles of Z and of Z¢ are based on o:

o Entanglement Entropy: entropy of (o2, ...,0%)/ ||lo|3

From QC to QC, Sep'19 27 / 48
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

N-1 N

1 2 3
A 7°
_\\M . [A]z — matricization
system state) = 3 A ) O @y | | Mz~ matricizz
o = (01,02,...,0r) — singular vals of [A]z

Entanglement measures between particles of Z and of Z¢ are based on o:
o Entanglement Entropy: entropy of (o2, ...,0%)/ ||lo|3

o Geometric Measure: 1 — o}/ ||o||3

From QC to QC, Sep'19 27 / 48

Nadav Cohen (TAU) Expressiveness in DL via QE



Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

1 2 3 N-1 N
7z 7°
_\\M [A]z — matricization
|system state) = Zdlu.d,\,:l Adyody [Va) @ ®|thay) e
o = (01,02,...,0r) — singular vals of [A]z

Entanglement measures between particles of Z and of Z¢ are based on o:
o Entanglement Entropy: entropy of (o2, ...,0%)/ ||lo|3
o Geometric Measure: 1 — o}/ ||o||3

e Schmidt Number: ||o||, = rank[A]z

From QC to QC, Sep'19 27 / 48
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement

Structural equivalence:

quantum many-body state

M
|system state) = Z Adidy V) ®
dhody=1

coeff tensor

func over many local elements

M
h(Xl, - ,XN) = Z Adl...dN 'fd1 (Xl)
diody=1

coeff tensor

state of
many particles

e
‘0

-
»

o 2
.

v
.
.

»* ¥

* ¥

»

@ [Ydy)

func over
many pixels

l,,mlmm

“‘de(xN)

e
#f

From QC to QC, Sep'19 28 / 48
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement

Structural equivalence:

state of

ticl
quantum many-body state r:azyiar"c.es

» b

i sonbi

system state) = > Ay 4y [Udy) @ @ [thay) whh b
di...dy=1 v vewws

coeff tensor N

unc over

func ov

func over many local elements many pixels

M gf“ -

_ 5 -

b o) = 0 Aday fa(a)fa () B
d1...dN=1 i % & The

coeff tensor

We may quantify dependencies func models between input
sets by applying entanglement measures to its coeff tensor!
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement — Interpretation

M
h(Xl,...,XN) = Z -Adl...dN 'fd1(xl)"'de(XN)
o Chy= coeff tensor
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement — Interpretation

M
h(Xl,...,XN) = Z -Adl...dN 'fd1(xl)"'de(XN)
o Chy= coeff tensor

When func h(-) is separable w.r.t. input sets Z/Z¢:

Jg, g st h(xi,...,xn) =g ((xi)iez) - & ((xi")ireze)

it does not model any dependence between Z/Z¢
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement — Interpretation

M
h(Xl,...,XN) = Z -Adl...dN 'fd1(x1)"'de(XN)
o Chy= coeff tensor

When func h(-) is separable w.r.t. input sets Z/Z¢:

Jg, g st h(xi,...,xn) =g ((xi)iez) - & ((xi")ireze)

it does not model any dependence between Z/Z¢

Entanglement measures on A quantify dist of h(-) from separability:

e A has high (low) entanglement w.r.t. Z/Z¢
= h(-) is far from (close to) separability w.r.t. Z/Z¢
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement — Interpretation

M
h(Xl,...,XN) = Z -Adl...dN 'fd1(x1)"'de(XN)
o Chy= coeff tensor

When func h(-) is separable w.r.t. input sets Z/Z¢:

Jg, g st h(xi,...,xn) =g ((xi)iez) - & ((xi")ireze)

it does not model any dependence between Z/Z¢

Entanglement measures on A quantify dist of h(-) from separability:

e A has high (low) entanglement w.r.t. Z/Z¢
= h(-) is far from (close to) separability w.r.t. Z/Z¢

@ Choice of entanglement measure determines dist metric
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Outline

© Expressiveness of Convolutional Networks

@ Analysis of Supported Entanglement

Nadav Cohen Expressiveness in DL via QE From QC to QC, Sep'19 30/ 48



Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Convolutional Arithmetic Circuits «— Tensor Networks

Recap
Func realized by ConvAC may be represented via tree TN

input X representation 1x1 conv

) ) ) pooling
' L4 1x1 conv oolin dense
X ° P J (output)
’ o o o
l g —A—

structural correspondence

ConvAC TN
input elements | terminal nodes

# of layers tree depth

layer widths bond dims

pool geometry connectivity

overlaps duplications

di dp d3 dy ds dg --- dn
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Entanglement via Minimal Cuts

Theorem (Quantum Max Flow/Min Cut)

Max Schmidt entanglement ConvAC models between input sets Z/1¢ =
min cut in respective TN separating nodes of Z/Z¢

ConvAC entanglement TN min cut separating
between input sets respective node sets
O
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Entanglement via Minimal Cuts

Theorem (Quantum Max Flow/Min Cut)

Max Schmidt entanglement ConvAC models between input sets Z/1¢ =
min cut in respective TN separating nodes of Z/Z¢

ConvAC entanglement TN min cut separating
between input sets respective node sets
O

for delta tensor at most
one edge is counted
(even if cut includes more)

h
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Analysis of Supported Entanglement

Expressiveness of Convolutional Networks

Entanglement via Minimal Cuts

Theorem (Quantum Max Flow/Min Cut)
Max Schmidt entanglement ConvAC models between input sets T /1€ =

min cut in respective TN separating nodes of Z/Z¢
TN min cut separating

ConvAC entanglement
between input sets respective node sets
O

for delta tensor at most
one edge is counted
(even if cut includes more)

|

|

li

I T

ﬂmmm

.

N

We may analyze the effect of ConvAC arch on

the dependencies (entanglement) it can model!
From QC to QC, Sep'19 32 /48
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Depth
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Expressiveness of Convolutional Networks

Depth

Conjecture — depth efficiency

Deep ConvNets realize func requiring shallow ConvNets to grow unfeasibly

Analysis of Supported Entanglement

152 layers 7\
k A:
\

\

\ 22 layers 19Ia‘vers

\ 6.7 73
i I \ shallow
ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
ImageNet Classification top-5 error (%)
‘Iccv Kaming He, XeangguZhang Shaogng Ren, & Jan Sun “Deop Resdual Learning for image Recogreson” arkiy 2015

Nadav Cohen (

Expressiveness in DL via QE
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Depth (cont'd)

For certain partitions, min cut in TN of deep ConvAC is exponentially
larger than in TN of shallow ConvAC

TN of deep ConvAC TN of shallow ConvAC

| only one edge is counted in the cut

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep'19
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Depth (cont'd)

For certain partitions, min cut in TN of deep ConvAC is exponentially
larger than in TN of shallow ConvAC

TN of deep ConvAC TN of shallow ConvAC

| only one edge is counted in the cut

This implies:

Deep ConvAC can model dependencies (entanglements) requiring shallow
ConvAC to have exponential width
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Depth (cont'd)

For certain partitions, min cut in TN of deep ConvAC is exponentially
larger than in TN of shallow ConvAC

TN of deep ConvAC TN of shallow ConvAC

| only one edge is counted in the cut

This implies:

Deep ConvAC can model dependencies (entanglements) requiring shallow
ConvAC to have exponential width

Depth efficiency proven for ConvAC! ‘
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths

Currently no principle for setting widths (# of channels) of ConvNet layers

XY 3

33‘25'72“5“ uﬂpnxls 4 6
PIG@18x17 23‘5@5“ 178@1x1

@sﬂﬂiﬂ
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths

Currently no principle for setting widths (# of channels) of ConvNet layers

XY 3

33‘25'72“5“ uﬂpnxls 4 6
PIG@18x17 23“@5“ 178@1x1

@sﬂﬂin

Q: What are implications of widening one layer vs. another?
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Analysis of Supported Entanglement

Expressiveness of Convolutional Networks

Layer Widths

Currently no principle for setting widths (# of channels) of ConvNet layers

XY 3

33‘25'72“5“ uﬂpnxls 4 6
PIG@18x17 23“@5“ 178@1x1

@sﬂﬂin

Q: What are implications of widening one layer vs. another?

Q: Can widths be tailored for a given task?

From QC to QC, Sep'19
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths (cont'd)

Deep (early) layer widths are important for long (short)-range dependencies

Nadav Cohen (TAU Expressiveness in DL via QE From QC to QC, Sep'19 36 / 48
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths (cont'd)

Deep (early) layer widths are important for long (short)-range dependencies

Experiment

] | NN

Global Task * Local Task 2 Wide-tip
c
90 » 5
80
> £
9 -
C e 5
=1 7 * layer depth
9
© e—e Wide-base - test | &0 e—e Wide-base - test 2 Wide-base
+ -+ Wide-base - train + —«+ Wide-base - train 3
ol ¢ o—e Wide-tip - test w0 o—e Wide-tip - test £
+ -+ Wide-tip - train + —+ Wide-tip - train 5
50 w * layer depth
10 15 20 25 30 10 15 20 25 30
# of channels parameter # of channels parameter
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths (cont'd)

Deep (early) layer widths are important for long (short)-range dependencies

Experiment

] | NN

Global Task e Local Task 2 Wide-tip
c
90 » <
80
> £
9 <
C e 5
=1 7 * layer depth
v}
v}
© e—e Wide-base - test | &0 e—e Wide-base - test 2 Wide-base
+ -+ Wide-base - train + —«+ Wide-base - train 3
wf ¢ o—e Wide-tip - test w0 o—e Wide-tip - test £
+ -+ Wide-tip - train + —+ Wide-tip - train 5
50 w * layer depth
10 15 20 25 30 10 15 20 25 30
# of channels parameter # of channels parameter

ConvAC layer widths can be tailored to maximize
dependencies (entanglements) required for given task!
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry

ConvNets typically employ square conv/pool windows

convl_act
hage (24x24x16) pool1
(28x28) (12x12616)

= .
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Analysis of Supported Entanglement

Expressiveness of Convolutional Networks

Pooling Geometry

ConvNets typically employ square conv/pool windows

conv_act
(24x24x16) pooll
(12x12x16)

x_image
(28628)

cMap1
(5x5x16)

CEE

SEEEEER —j:t:;ﬁ'“ i

LB HHE ;

44.414

From QC to QC, Sep'19
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry

ConvNets typically employ square conv/pool windows

convl_act
hage (24x24x16) pool1
(28x28) (12x12616)

cMap1
(5x5x16)

Recently, dilated windows have also become popular

CEE

o=1 o=z
|
|

Q: What are implications of one window geometry vs. another?
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Analysis of Supported Entanglement

Expressiveness of Convolutional Networks

Pooling Geometry

ConvNets typically employ square conv/pool windows

convl_act
hage (24x24x16) pool1
(28x28) (12x12616)

cMap1
(5x5x16)

CEE

i
SN S

Q: What are implications of one window geometry vs. another?

u
s
H

Q: Can geometries be tailored for a given task?

From QC to QC, Sep'19
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry (cont'd)

Input elements pooled together early have stronger dependence
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry (cont'd)

Input elements pooled together early have stronger dependence

Experiment

datd
low
y y: low y: high y! y: high
square pooling mirror pooling
(local interactions) (interactions between reflections)
s
arch
task symmetry task
A o . .
reSu‘tS i
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry (cont'd)

Input elements pooled together early have stronger dependence

Experiment

datd
low high low w,h
y y: low 2 low : high
square pooling mirror pooling
(local interactions) (interactions between reflections)
arChS m m
task symmetry task
resu‘ts i

ConvAC pooling geometry can be tailored to maximize
dependencies (entanglements) required for given task!
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Overlapping Operations
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Overlapping Operations

Modern ConvNets employ both overlapping and non-overlapping
conv/pool operations

Input patch Output feature vector Output feature vector
el xhxw) (e2x1x1) (e3xixl)

Convolutional Filter
I fc2xclxhxw)

=

Convolutional layer CCCP layer

Convolutional Filter
(Ixe2xlxl)
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Overlapping Operations

Modern ConvNets employ both overlapping and non-overlapping
conv/pool operations

Input patch Output feature vector Output feature vector
el xhxw) (c2xlxl) (3xlixl)

Convolutional Filter
fc2xclxhxw)

=

Convolutional layer CCCP layer

Convolutional Filter
(Ixe2xlxl)

Q: What are implications of introducing overlaps?

Nadav Cohen Expressiveness in DL via QE From QC to QC, Sep'19



Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Overlapping Operations (cont'd)

Overlaps in conv/pool operations allow modeling dependencies that
otherwise require exponential size
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Analysis of Supported Entanglement

Expressiveness of Convolutional Networks

Overlapping Operations (cont'd)

Overlaps in conv/pool operations allow modeling dependencies that

otherwise require exponential size

Area/volume law:

B A B
d=1: } }
— Ay area law
entanglement Al‘ijrrl
d=2 A 3 volume law
entanglement oc AZ
" Alin

From QC to QC, Sep'19 40 / 48
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Analysis of Supported Entanglement

Expressiveness of Convolutional Networks

Overlapping Operations (cont'd)

Overlaps in conv/pool operations allow modeling dependencies that
otherwise require exponential size

Area/volume law:

B A B
d=1 } }
— Ay area law
entanglement Al‘ijrrl
d=2: " 3 volume law
entanglement oc AZ
" Alin

ConvAC w/overlaps supports volume law entanglement!

Expressiveness in DL via QE From QC to QC, Sep'19
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Extensions

@ Extensions
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Extensions
Other Types of Convolutional Networks
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Extensions
Other Types of Convolutional Networks

We established equivalence:
ConvAC «+— TN

and used it to analyze dependencies (entanglement) ConvAC can model
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Extensions
Other Types of Convolutional Networks

We established equivalence:
ConvAC «+— TN

and used it to analyze dependencies (entanglement) ConvAC can model

ConvAC delivers promising results in practice, but other ConvNets (e.g.
w/ReLU activation and max pooling) are more common
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Extensions
Other Types of Convolutional Networks

We established equivalence:
ConvAC «+— TN

and used it to analyze dependencies (entanglement) ConvAC can model

ConvAC delivers promising results in practice, but other ConvNets (e.g.
w/ReLU activation and max pooling) are more common

Our analysis extends to other ConvNets if we generalize delta tensor:

delta tensor generalized delta tensor

r— <\|:g(ul,\’1),g(”zs‘ﬁ)?"‘T

/o\ 2
@ @ @ @
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Extensions

Recurrent Networks
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Extensions
Recurrent Networks

We analyzed convolutional nets via equivalence to TN w/tree arch

. @
input  rep

conv A
o bool conv X . X
NI By - 2222

dy do ds dy ds dg --- dn
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Extensions
Recurrent Networks

We analyzed convolutional nets via equivalence to TN w/tree arch

(_>
input  rep

D e - 2

(l, (Ig ds dy ds (1( (l\

Analysis extends to recurrent nets via equivalence to TN w/chain arch
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Extensions
Recurrent Networks

We analyzed convolutional nets via equivalence to TN w/tree arch

. @
input  rep

conv | A -
00
ﬂ U p conv <"§’X\c;> O‘A‘<;>
' e pool dense % é ﬁ
cee ——».ﬁ <> PP <§> PP PP

dy do ds dy ds dg --- dn

Analysis extends to recurrent nets via equivalence to TN w/chain arch

Recurrent nets process data sequentially; ability to model dependencies
(entanglement) quantifies memory
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© Conclusion
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Conclusion
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Conclusion
Recap

@ Three pillars of statistical learning theory:
Expressiveness Generalization Optimization
o Well developed theory for classical ML

e Limited understanding for DL

@ State of the art DL arch can be represented as TN:
convolutional nets <+—  tree TN

recurrent nets +— chain TN
@ Quantum entanglement quantifies dependencies modeled by DL arch

@ Quantum max flow/min cut theorem

= new results on expressiveness in DL!
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Understanding deep learning calls for natural sciences
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Outline
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Thank You
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