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DL Theory: Expressiveness, Generalization & Optimization

Statistical Learning Setup

X — instance space (e.g. R100×100 for 100-by-100 grayscale images)

Y — label space (e.g. R for regression or {1, . . . , k} for classification)

D — distribution over X × Y (unknown)

` : Y×Y → R≥0 — loss func (e.g. `(y , ŷ) = (y − ŷ)2 for Y = R)

Task
Given training set S = {(Xi , yi )}mi=1 drawn i.i.d. from D, return hypothesis
(predictor) h : X → Y that minimizes population loss:

LD(h) := E(X ,y)∼D[`(y , h(X ))]
Approach
Predetermine hypotheses space H ⊂ YX , and return hypothesis h ∈ H
that minimizes empirical loss:

LS(h) := 1
m
∑m

i=1
`(yi , h(Xi ))
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DL Theory: Expressiveness, Generalization & Optimization

Three Pillars of Statistical Learning Theory:
Expressiveness, Generalization and Optimization

h
*

Sh

*h

*f

(all functions)

(hypotheses space)

f ∗D — ground truth (minimizer of population loss over all func)

h∗D — optimal hypothesis (minimizer of population loss over H)

h∗S — empirically optimal hypothesis (minimizer of empirical loss over H)

h̄ — returned hypothesis
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning

Euclidean instance/label spaces: X = Rd , Y = Rk

Linear hypotheses space: H = {x 7→W x : W ∈ Rk,d}

Support Vector 
Machine

Least Squares 
Regression
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DL Theory: Expressiveness, Generalization & Optimization

Classical Machine Learning – Three Pillars

h
*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

(all functions)

(hypotheses space)

Optimization
Empirical loss minimization is a convex program:

h̄ ≈ h∗S ( training err ≈ 0 )

Expressiveness & Generalization
Bias-variance trade-off:

H approximation err estimation err
expands ↘ ↗
shrinks ↗ ↘

Well developed theory
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning
Euclidean instance/label spaces

Composite (non-linear) hypotheses space

Fully-Connected Networks

Convolutional Networks

Recurrent Networks

input layer

hidden layer

output layer

=

Convolutional Networks
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DL Theory: Expressiveness, Generalization & Optimization

Deep Learning – Three Pillars

h
*

Sh

*h

*f

Approximation Error 
(Expressiveness)

Estimation Error 
(Generalization)Training Error 

(Optimization)

(all functions)

(hypotheses space)

Optimization
Empirical loss minimization is a non-convex program:

h∗S is not unique — many hypotheses have low training err
Gradient descent (GD) somehow reaches one of these

Expressiveness & Generalization
Vast difference from classical ML:

Some low training err hypotheses generalize well, others don’t
W/typical data, solution returned by GD often generalizes well
Expanding H reduces approximation err, but also estimation err!

Not well understood
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Convolutional Networks as Tensor Networks
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Convolutional Networks as Tensor Networks

Convolutional Networks
Most successful deep learning arch to date!

Classic structure:

Modern variants:

Traditionally used for images/video, nowadays for audio/text as well
Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep’19 14 / 48



Convolutional Networks as Tensor Networks

Coefficient Tensor
ConvNets realize func over many local elements (e.g. pixels)

Let H = span{fi (x)}Mi=1 be Hilbert space of func over single element

Tensor product H⊗N is then Hilbert space of func over N elements

Any h(·) ∈ H⊗N can be written as:

h(x1, . . . , xN) =
M∑

d1...dN=1
Ad1...dN

N∏
i=1

fdi (xi ) = 〈A |F(x1, . . . , xN)〉

where:
F(x1, . . . , xN) – product (rank-1) tensor, depends only on input(
F(x1, . . . , xN) := f(x1)⊗ · · · ⊗ f(xN) , f(xi ) := [f1(xi ), . . ., fM(xi )]>

)
A – coefficient tensor, fully determines func h(·)

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep’19 15 / 48
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)

A – coefficient tensor, fully determines func h(·)
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Convolutional Networks as Tensor Networks

Tensor Networks
In quantum physics, high-order tensors are simulated via:

Tensor Networks

Tensor Networks (TN):

Graphs in which: vertices ←→ tensors edges ←→ modes
scalar vector matrix order-3 tensor

Edge (mode) connecting two vertices (tensors) represents contraction
inner-product 

between vectors
matrix 

multiplication edges weighted by 
mode dimensions
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Convolutional Networks as Tensor Networks

Tree Tensor Network −→ Convolutional Arithmetic Circuit

h(x1, . . . , xN) =
〈

A︸︷︷︸
coeff tensor

∣∣∣ F(x1, . . . , xN)︸ ︷︷ ︸
input product tensor

〉

Coeff tensor A is exponential (in # of input elements N)

=⇒ directly computing general func is intractable

Observation
Decomposing coeff tensor w/tree TN gives ConvNet w/linear activation
and product pooling – Convolutional Arithmetic Circuit (ConvAC)!

TN topology ←→ ConvAC arch

TN tensors ←→ ConvAC weights
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Convolutional Networks as Tensor Networks

Example 1: Shallow Model

h(x1, . . . , xN) =
〈

A︸︷︷︸
coeff tensor

∣∣∣ F(x1, . . . , xN)︸ ︷︷ ︸
input product tensor

〉

W/star TN applied to coeff tensor:

func is computed by shallow ConvAC (single hidden layer, global pooling):
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Convolutional Networks as Tensor Networks

Example 2: Deep Model

h(x1, . . . , xN) =
〈

A︸︷︷︸
coeff tensor

∣∣∣ F(x1, . . . , xN)︸ ︷︷ ︸
input product tensor

〉

W/binary tree TN applied to coeff tensor:

func is computed by deep ConvAC (size-2 pooling windows):

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep’19 19 / 48



Convolutional Networks as Tensor Networks

Example 2: Deep Model

h(x1, . . . , xN) =
〈

A︸︷︷︸
coeff tensor

∣∣∣ F(x1, . . . , xN)︸ ︷︷ ︸
input product tensor

〉

W/binary tree TN applied to coeff tensor:

func is computed by deep ConvAC (size-2 pooling windows):

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep’19 19 / 48



Convolutional Networks as Tensor Networks

Example 3: Deep Model with Overlaps

h(x1, . . . , xN) =
〈

A︸︷︷︸
coeff tensor

∣∣∣ F(x1, . . . , xN)︸ ︷︷ ︸
input product tensor

〉

W/“duplicated” tree TN applied to coeff tensor:

func is computed by deep ConvAC w/overlaps:
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Expressiveness of Convolutional Networks

Outline

1 Deep Learning Theory: Expressiveness, Generalization and Optimization

2 Convolutional Networks as Tensor Networks

3 Expressiveness of Convolutional Networks
Dependencies as Quantum Entanglement
Analysis of Supported Entanglement

4 Extensions

5 Conclusion
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Expressiveness of Convolutional Networks

Expressiveness

h
*

Sh

*h

*f

Approximation Error 
(Expressiveness)

(all functions)

(hypotheses space)

f ∗D – ground truth (minimizer of population loss over all func)

h∗D – optimal hypothesis (minimizer of population loss over H)

h∗S – empirically optimal hypothesis (minimizer of empirical loss over H)

h̄ – returned hypothesis
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Outline

1 Deep Learning Theory: Expressiveness, Generalization and Optimization

2 Convolutional Networks as Tensor Networks

3 Expressiveness of Convolutional Networks
Dependencies as Quantum Entanglement
Analysis of Supported Entanglement

4 Extensions

5 Conclusion
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Modeling Dependencies in Data
ConvNets realize func over many local elements (e.g. pixels)

Key property of such func:
dependencies modeled between sets of input elements

Partition BPartition A

Modeling strong dependence between 
yellow and blue pixels is important here

Less important here

Q: What kind of dependencies do ConvNets model?

Q: How do these relate to network arch?
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement
1 2 NN-13 . . . . . .

In quantum physics, particle is represented as vec in Hilbert space:

|particle state〉 =
∑M

d=1
ad︸︷︷︸
coeff

· |ψd〉︸︷︷︸
basis

∈ H

System of N particles is represented as vec in tensor product space:

|system state〉 =
∑M

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

· |ψd1〉 ⊗ · · · ⊗ |ψdN 〉 ∈ H⊗N

Quantum entanglement quantifies “dependencies” that system state
models between sets of particles

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep’19 25 / 48



Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement
1 2 NN-13 . . . . . .

In quantum physics, particle is represented as vec in Hilbert space:

|particle state〉 =
∑M

d=1
ad︸︷︷︸
coeff

· |ψd〉︸︷︷︸
basis

∈ H

System of N particles is represented as vec in tensor product space:

|system state〉 =
∑M

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

· |ψd1〉 ⊗ · · · ⊗ |ψdN 〉 ∈ H⊗N

Quantum entanglement quantifies “dependencies” that system state
models between sets of particles

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep’19 25 / 48



Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement
1 2 NN-13 . . . . . .

In quantum physics, particle is represented as vec in Hilbert space:

|particle state〉 =
∑M

d=1
ad︸︷︷︸
coeff

· |ψd〉︸︷︷︸
basis

∈ H

System of N particles is represented as vec in tensor product space:

|system state〉 =
∑M

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

· |ψd1〉 ⊗ · · · ⊗ |ψdN 〉 ∈ H⊗N

Quantum entanglement quantifies “dependencies” that system state
models between sets of particles

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep’19 25 / 48



Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement
1 2 NN-13 . . . . . .

In quantum physics, particle is represented as vec in Hilbert space:

|particle state〉 =
∑M

d=1
ad︸︷︷︸
coeff

· |ψd〉︸︷︷︸
basis

∈ H

System of N particles is represented as vec in tensor product space:

|system state〉 =
∑M

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

· |ψd1〉 ⊗ · · · ⊗ |ψdN 〉 ∈ H⊗N

Quantum entanglement quantifies “dependencies” that system state
models between sets of particles

Nadav Cohen (TAU) Expressiveness in DL via QE From QC to QC, Sep’19 25 / 48



Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)

|system state〉 =
∑M

d1...dN=1
Ad1...dN ·|ψd1〉⊗· · ·⊗|ψdN 〉

1 2 NN-13 . . . . . .

Consider partition of particles into sets I and Ic

JAKI – matricization of coeff tensor A w.r.t. I:
arrangement of A as matrix

rows/cols correspond to modes indexed by I/Ic
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)
1 2 NN-13 . . . . . .

c

|system state〉 =
∑M

d1...dN =1
Ad1...dN · |ψd1〉⊗ · · ·⊗ |ψdN 〉

JAKI – matricization
of A w.r.t. I

σ = (σ1, σ2, . . . , σR) — singular vals of JAKI

Entanglement measures between particles of I and of Ic are based on σ:

Entanglement Entropy: entropy of (σ21, . . . , σ2R)/ ‖σ‖22

Geometric Measure: 1− σ21/ ‖σ‖
2
2

Schmidt Number: ‖σ‖0 = rankJAKI
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Quantum Entanglement (cont’d)
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement
Structural equivalence:

quantum many-body state

|system state〉 =
M∑

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

· |ψd1〉 ⊗ · · · ⊗ |ψdN 〉

func over many local elements

h(x1, . . . , xN) =
M∑

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

·fd1(x1) · · · fdN (xN)

state of 
many particles

func over 
many pixels

We may quantify dependencies func models between input
sets by applying entanglement measures to its coeff tensor!
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Expressiveness of Convolutional Networks Dependencies as Quantum Entanglement

Measuring Dependence with Entanglement – Interpretation

h(x1, . . . , xN) =
M∑

d1...dN=1
Ad1...dN︸ ︷︷ ︸
coeff tensor

·fd1(x1) · · · fdN (xN)

When func h(·) is separable w.r.t. input sets I/Ic :

∃g , g ′ s.t. h(x1, . . . , xN) = g ((xi )i∈I) · g ′ ((xi ′)i ′∈Ic )

it does not model any dependence between I/Ic

(in probabilistic setting, means I/Ic are stat independent)

Entanglement measures on A quantify dist of h(·) from separability:

A has high (low) entanglement w.r.t. I/Ic

=⇒ h(·) is far from (close to) separability w.r.t. I/Ic

Choice of entanglement measure determines dist metric
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Convolutional Arithmetic Circuits ←→ Tensor Networks
Recap
Func realized by ConvAC may be represented via tree TN
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Entanglement via Minimal Cuts

Theorem (Quantum Max Flow/Min Cut)
Max Schmidt entanglement ConvAC models between input sets I/Ic =
min cut in respective TN separating nodes of I/Ic
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Entanglement via Minimal Cuts

Theorem (Quantum Max Flow/Min Cut)
Max Schmidt entanglement ConvAC models between input sets I/Ic =
min cut in respective TN separating nodes of I/Ic

We may analyze the effect of ConvAC arch on
the dependencies (entanglement) it can model!
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Depth

Conjecture – depth efficiency
Deep ConvNets realize func requiring shallow ConvNets to grow unfeasibly
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Depth (cont’d)
For certain partitions, min cut in TN of deep ConvAC is exponentially
larger than in TN of shallow ConvAC

This implies:
Claim
Deep ConvAC can model dependencies (entanglements) requiring shallow
ConvAC to have exponential width

Depth efficiency proven for ConvAC!
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths

Currently no principle for setting widths (# of channels) of ConvNet layers

Q: What are implications of widening one layer vs. another?

Q: Can widths be tailored for a given task?
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Layer Widths (cont’d)

Claim
Deep (early) layer widths are important for long (short)-range dependencies

Experiment

ConvAC layer widths can be tailored to maximize
dependencies (entanglements) required for given task!
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry

ConvNets typically employ square conv/pool windows

Recently, dilated windows have also become popular

Q: What are implications of one window geometry vs. another?

Q: Can geometries be tailored for a given task?
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Pooling Geometry (cont’d)
Claim
Input elements pooled together early have stronger dependence

Experiment

closedness: low

symmetry: low

closedness: high

symmetry: low

closedness: low

symmetry: high

closedness: high

symmetry: high

square pooling
(local interactions)

mirror pooling
(interactions between reflections)

closedness task symmetry task

ConvAC pooling geometry can be tailored to maximize
dependencies (entanglements) required for given task!
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Overlapping Operations

Modern ConvNets employ both overlapping and non-overlapping
conv/pool operations

Q: What are implications of introducing overlaps?
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Expressiveness of Convolutional Networks Analysis of Supported Entanglement

Overlapping Operations (cont’d)
Claim
Overlaps in conv/pool operations allow modeling dependencies that
otherwise require exponential size

Area/volume law:

area law
entanglement ∝ Ad−1

lin

volume law
entanglement ∝ Ad

lin

ConvAC w/overlaps supports volume law entanglement!
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Extensions

Other Types of Convolutional Networks

We established equivalence:
ConvAC ←→ TN

and used it to analyze dependencies (entanglement) ConvAC can model

ConvAC delivers promising results in practice, but other ConvNets (e.g.
w/ReLU activation and max pooling) are more common

Our analysis extends to other ConvNets if we generalize delta tensor:
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Extensions

Recurrent Networks

We analyzed convolutional nets via equivalence to TN w/tree arch

Analysis extends to recurrent nets via equivalence to TN w/chain arch

Recurrent nets process data sequentially; ability to model dependencies
(entanglement) quantifies memory
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Conclusion

Recap

Three pillars of statistical learning theory:
Expressiveness Generalization Optimization

Well developed theory for classical ML

Limited understanding for DL

State of the art DL arch can be represented as TN:
convolutional nets ←→ tree TN
recurrent nets ←→ chain TN

Quantum entanglement quantifies dependencies modeled by DL arch

Quantum max flow/min cut theorem
=⇒ new results on expressiveness in DL!
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Conclusion

Perspective

Understanding deep learning calls for natural sciences
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Thank You
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