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Optimal Control (Reinforcement Learning)

Goal
Design controller that steers a dynamical system to minimize a cost

B

Controller

Applications
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Computer Autonomous Medical Manufacturing
gaming driving treatment optimization



4 /23
Learning via Trial & Error

Learning a controller typically entails trial & error over system

Computer PIaylng Autonomous Medical Manufacturlng
gaming driving treatment optimization
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Offline System ldentification and Optimal Control

Natural approach for learning a controller without trail & error:

[Step 1 Offline System ldentification

Use pre-recorded data for offline learning
of a system model
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Realizing approach via overparameterized models (e.g. neural networks)
trained by gradient descent (GD) yields breakthrough results

[Step 2 Optimal Control

Use system model for offline learning of
an optimal controller
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Controller System Model
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Case Study |: Medical Treatment

Machine Learning for Mechanical Ventilation Control

Daniel Suo'’, Naman Agarwal®, Wenhan Xia*'!, Xinyi Chen'!, Udaya Ghai*!, Alexander Yu",

Paula Gradu®, Karan Singh*!, Cyril Zhang'!, Edgar Minasyan*!, Julienne LaChance’, Tom
Zajdel', Manuel Schottdorf!, Daniel Cohen'!, Elad Hazan*!

Abstract ventilation, a form of assist-control ventilation, evi-

Mechanical ventilation is one of the most widely dence suggests that a combination of high peak pres-
used therapies in the ICU. However, despite

sure and high tidal volume can lead to tissue injury in
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Step 1 Offline System Identification A fStepZ Optimal Control

Use pre-recorded data for offline learning

Use lungs model for offline learning of a
of a lungs model

mechanical ventilator controller
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Case Study Il: Manufacturing Optimization
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Step 1 Offline System Identification Step 2 Optimal Control
Use pre-recorded data for offline learning Use plant model for offline learning of a
of a neural network plant model neural network controller
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Implicit Biases of Gradient Descent

When using overparameterized models:

g Offline System ldentification N ( Optimal Control A
Multiple system models fit pre-recorded data, Multiple controllers are optimal for learned
some generalize well while others do not system model and given set of initial states,

Fact that learned solutions generalize well results from implicit biases of GD
“ J
N

Not only in-distribution but also
out-of-distribution (extrapolation)

Q: Can we theoretically characterize when implicit bias of GD leads to extrapolation?
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Outline

: _@_ > Offline System Identification: Extrapolation to Longer Horizon
in Overparameterized Linear Models



Linear Dynamical System

A cornerstone of control theory is the linear dynamical system (LDS):

« Parameters

A c RPXD B e RPXM C e REXD

/ f \

State transition matrix Action matrix Observation matrix

« Dynamics

Forh=0,1,2,..: Xpt+1 =Ax; +Bu, , y,=0Cxy,

/ % \ \

Next state  Current state  Action Observation

For system identification, we focus on common case of symmetric A and M = K = 1 (SISO)

- J
Y

Covers modern state space models (e.g. S4, Mamba,...)
(Gu et al. 2022, Gu & Dao 2023,...)
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Offline Overparameterized Linear System ldentification

Consider (unknown) ground truth LDS A*, B*, C* with state dim D*

Given
Pre-recorded data of horizon H: {(u™™,y*M), ... (u¥) (M)}
(1) /Zl) N
Action sequence (u; /..., Uy ) Ground truth observation at time H
Goal

|dentify ground truth LDS, thereby extrapolating to longer horizon

Method
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Train overparameterized LDS A, B, C with state dim D > D* by running GD over squared loss:

Li(A,B,C)=LYN ( (n) _ y*m))

To decouple extrapolation from in-distribution generalization we assume unlimited data (N — o0o)

— Ly(A,B,C)=XY""1(CA"B - C*A*'B*)’



Quantifying Extrapolation

EH(Aa Ba C) —

H-1
h=0

(CA"B — C*A*"B*)”

Optimality Condition
Loss Ly7(-) is minimized if and only if

CA"B = C*A*"B* forall h=0,...,H—1

Definition: Extrapolation to Longer Horizon

For ¢ > 0, we say learned LDS A, B, C ¢c-extrapolates to horizon H' > H if:

CA"B — C*A*"B*| < ¢ forall he {0,...,H' — 1)
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Implicit Bias of Gradient Descent Leads to Extrapolation

Theory
Proposition: Existence of Non-Extrapolating Models

When D > H ,forany € > 0, H' > H, and ground truth LDS A*, B*, C*, there exist model
parameters A, B, C that minimize £z (-) but do not e-extrapolate to horizon H’

Theorem: GD Leads to Extrapolating Model

When D > H > 2D*, if GD learns model parameters A, B, C that minimize £y (-), then for
any € > 0 and H’ > H, the parameters e-extrapolate to horizon H’

Experiments e

- Validate theory (with linear models) Extrapolation

Error

« Demonstrate theoretical results with neural networks ) B

Training Horizon
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Outline

ﬁ% Optimal Control: Extrapolation to Unseen Initial States
x in Overparameterized Linear Controllers
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Linear Quadratic Regulator

A fundamental problem in control theory is the linear quadratic regulator (LQR):

@ Quadratic Cost Linear Controller
ZhH:() X;Lr Qxy, + u;Ruh u;, = Kxy,
\_ J g f 1\ J \_ R J
/ | \
State cost matrix Action cost matrix Control matrix
(parameter) (parameter) (designed to minimize cost)

Set of seen initial states S induces a training cost:
costs(K) = ﬁ D xS Zfzo X)) (Q + KTRK)xh

We study practically motivated setting where multiple controllers minimize training cost

Consider learning controller K p by running GD over training cost

Q of prime importance: Does K extrapolate to unseen initial states?



Quantifying Extrapolation

Optimality Condition
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A controller K minimizes the training cost if and only if ||(A + BK)xg|[? =0 forall xo € S
g J

Y
K sends xgto zero

Definition: Error in Extrapolation to Unseen Initial States

E(K) = ﬁ > wocull(A +BK)xo|l*  where U is a basis of S (unseen subspace)

Baseline Controllers

-
Perfectly Extrapolating K.

Satisfies (A + BK..)xo = 0 for all xq

Minimizes training cost and
E(Kext) = 0

-

~
Non-Extrapolating K, ot
Satisfies (A + BK gext )Xo = 0 X0 €5
Axy ,xp€eU
Minimizes training cost but
€ (Kno-ext) is typically high )
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Intuition: Extrapolation is Determined by Exploration

Intuition Behind Our Results
Extrapolation of Kqp is determined by exploration induced by system from seen initial states

GD Iterate ¢t Controller Non-Extrapolating Controller GD Final Controller
State Dynamics State Dynamics State Dynamics

—7 —7 —7

~ -—-—-_'_-_-_-9 o [ e | I I N A
/ Pl S L
/ i d o
0 0

C 0 ‘/ C / C <( -------- /

initial state seen in training
explored state

unexplored state
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Theoretical Analysis

Proposition: Extrapolation Requires Exploration

* For states orthogonal to those reached during GD, Kap and K,,.«x: produce identical controls
* There exist non-exploratory systems in which: £(Kgp) = £(Kpo-ext)

Proposition: Extrapolation in Exploration-Inducing Setting

There exist exploration-inducing settings in which: £(Kqp) << £(Kpo-ext)

Theorem: Extrapolation in Typical Setting

Learning rate

When A is random Gaussian: /

2 Horizon
S(KGD) < E(Kno—ext) — {2 (77 ) %éj :
State dim

in expectation, and with high probability if D is large

Intuition: random system generically induces exploration (formalized via random matrix theory + topology)
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Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory
Linear system induces exploration from seen initial states » linear controller typically extrapolates

Experiments
Phenomenon extends to non-linear systems and neural network controllers

Pendulum Control Problem Initial S Final States: Final States:
(analogous experiments for a S GD Controller Non-Extrapolating Controller
quadcopter control problem) % o
Y target state

+ %

@ initial state seen in training

@ initial state unseen in training

/

GD controller extrapolates despite existence of non-extrapolating controllers!
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Outline

I—-‘L
o E Conclusion




Recap

Learning to control critical systems via trial & error is prohibitively costly/dangerous

Natural approach: offline system identification and optimal control

» Breakthrough results with overparameterized models trained by gradient descent (GD)

/
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Fueled by implicit biases of GD, which lead to out-of-distribution generalization (extrapolation)

Theory: for overparameterized linear models:

If training horizon is sufficiently long,
GD extrapolates to longer horizon

\_

(o 0
Offline System Identification

~

J

Experiments: phenomena extend to neural networks

\

-
Optimal Control

If exploration induced by system from
initial states seen in training is sufficient,
GD extrapolates to unseen initial states

J
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Practical Implications

Our results suggest avenues for improving extrapolation in practical settings:
(o g N\ . ~

Offline System ldentification Optimal Control

Developing algorithms for inferring Develop.lng algorlth.ms .fo.r.selectmg
. . . . exploration promoting initial states to
required training horizon ,
train on

- J L J

For practical progress in control of critical systems:

Theory may be necessary

Trial & error
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