Implicit Biases of Gradient Descent in Offline System Identification and Optimal Control

Nadav Cohen Tel Aviv University & Imubit

AI Week 26 June 2024

Talk Sources

Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States

Razin* + Alexander* + Cohen-Karlik + Giryes + Globerson + C | *ICML* 2024

Learning Low Dimensional State Spaces with Overparameterized Recurrent Neural Nets

Cohen-Karlik + Menuhin-Gruman + Giryes + C + Globerson | *ICLR* 2023

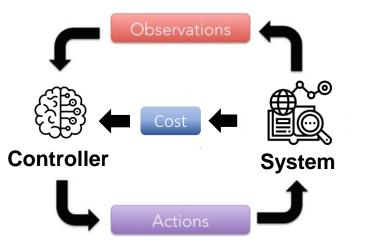
On the Implicit Bias of Gradient Descent for Temporal Extrapolation

Cohen-Karlik + Ben David + C + Globerson | AISTATS 2022

Optimal Control (Reinforcement Learning)

Goal

Design controller that steers a dynamical system to minimize a cost



Applications

Computer

gaming

Playing Go

Autonomous driving

Medical treatment

Manufacturing optimization

Learning via Trial & Error

Learning a controller typically entails trial & error over system

Feasible in some applications; prohibitively costly/dangerous in others

Computer gaming

Playing Go

Autonomous driving

Medical treatment

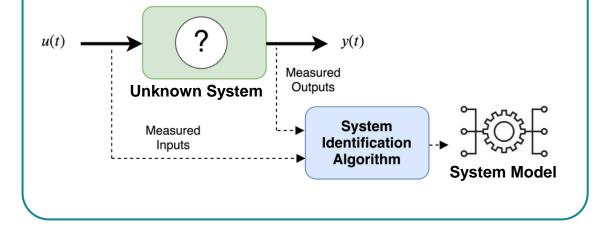
Manufacturing optimization

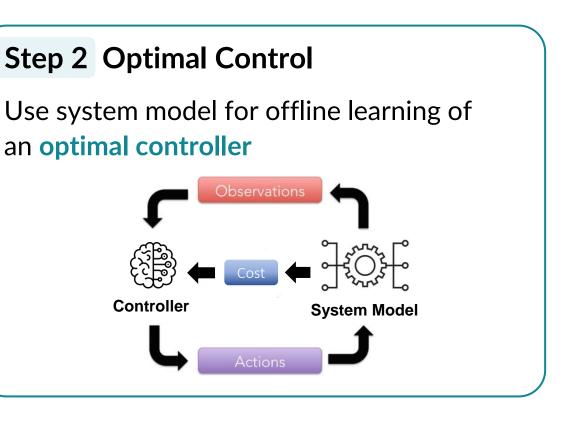
Offline System Identification and Optimal Control

Natural approach for learning a controller without trail & error:

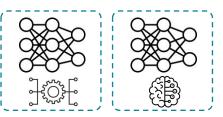
Step 1 Offline System Identification

Use pre-recorded data for offline learning of a **system model**





Realizing approach via **overparameterized models** (e.g. neural networks) trained by **gradient descent** (**GD**) yields breakthrough results



Case Study I: Medical Treatment

Machine Learning for Mechanical Ventilation Control

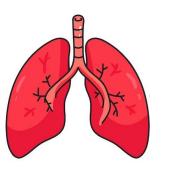
Daniel Suo^{*†}, Naman Agarwal^{*}, Wenhan Xia^{*†}, Xinyi Chen^{*†}, Udaya Ghai^{*†}, Alexander Yu^{*}, Paula Gradu^{*}, Karan Singh^{*†}, Cyril Zhang^{*†}, Edgar Minasyan^{*†}, Julienne LaChance[†], Tom Zajdel[†], Manuel Schottdorf[†], Daniel Cohen[†], Elad Hazan^{*†}

Abstract Mechanical ventilation is one of the most widely used therapies in the ICU. However, despite

ventilation, a form of assist-control ventilation, evidence suggests that a combination of high peak pressure and high tidal volume can lead to tissue injury in

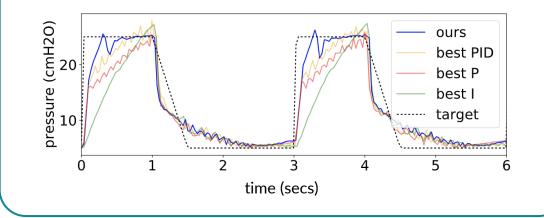
Step 1 Offline System Identification

Use pre-recorded data for offline learning of a lungs model



Step 2 Optimal Control

Use lungs model for offline learning of a mechanical ventilator controller



Case Study II: Manufacturing Optimization

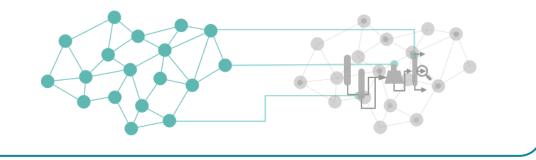
* IMUBIT REQUEST A DEMO WHY IMUBIT 👻 PRODUCT INDUSTRIES SUSTAINABILITY COMPANY BLOG **Unlock new value**

Step 1 Offline System Identification

Use pre-recorded data for offline learning of a neural network plant model

Step 2 Optimal Control

Use plant model for offline learning of a neural network controller



10–20% Reduction In Energy Consumption

1%-3% Yield Improvement

Implicit Biases of Gradient Descent

When using overparameterized models:

Offline System Identification

Multiple system models fit pre-recorded data, some generalize well while others do not

Optimal Control

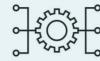
Multiple controllers are optimal for learned system model and given set of initial states, **some generalize well while others do not**

Fact that learned solutions generalize well results from implicit biases of GD

Not only in-distribution but also **out-of-distribution** (extrapolation)

Q: Can we theoretically characterize when implicit bias of GD leads to extrapolation?

Outline



Offline System Identification: Extrapolation to Longer Horizon in Overparameterized Linear Models

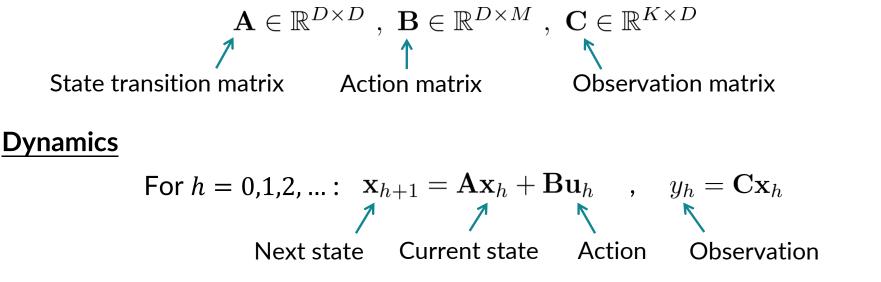
Optimal Control: Extrapolation to Unseen Initial States in Overparameterized Linear Controllers

Conclusion

Linear Dynamical System

A cornerstone of control theory is the linear dynamical system (LDS):

Parameters



For system identification, we focus on common case of symmetric **A** and M = K = 1 (SISO) Covers modern state space models (e.g. S4, Mamba,...) (Gu et al. 2022, Gu & Dao 2023...)

Offline Overparameterized Linear System Identification

Consider (unknown) ground truth LDS $\mathbf{A}^*, \mathbf{B}^*, \mathbf{C}^*$ with state dim D^*

<u>Given</u>

Pre-recorded data of horizon *H*: $\{(\mathbf{u}^{(1)}, y^{*(1)}), ..., (\mathbf{u}^{(N)}, y^{*(N)})\}$

Action sequence $(u_1^{(1)}, \dots, u_H^{(1)})$ Ground truth observation at time H

Goal

Identify ground truth LDS, thereby extrapolating to longer horizon

Method

Train overparameterized LDS A, B, C with state dim $D > D^*$ by running GD over squared loss:

$$\mathcal{L}_H(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \frac{1}{N} \sum_{n=1}^N \left(y_H^{(n)} - y^{*(n)} \right)^2$$

To decouple extrapolation from in-distribution generalization we assume unlimited data ($N
ightarrow \infty$)

$$\implies \mathcal{L}_{H}(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \sum_{h=0}^{H-1} \left(\mathbf{C} \mathbf{A}^{h} \mathbf{B} - \mathbf{C}^{*} \mathbf{A}^{*h} \mathbf{B}^{*} \right)^{2}$$

Quantifying Extrapolation

$$\mathcal{L}_{H}(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \sum_{h=0}^{H-1} \left(\mathbf{C} \mathbf{A}^{h} \mathbf{B} - \mathbf{C}^{*} \mathbf{A}^{*h} \mathbf{B}^{*} \right)^{2}$$

Optimality Condition

Loss $\mathcal{L}_H(\cdot)$ is minimized if and only if

 $\mathbf{C}\mathbf{A}^{h}\mathbf{B} = \mathbf{C}^{*}\mathbf{A}^{*h}\mathbf{B}^{*}$ for all $h = 0, \dots, H-1$

Definition: Extrapolation to Longer Horizon

For $\epsilon > 0$, we say learned LDS $\mathbf{A}, \mathbf{B}, \mathbf{C} \epsilon$ -extrapolates to horizon H' > H if: $\left| \mathbf{C}\mathbf{A}^{h}\mathbf{B} - \mathbf{C}^{*}\mathbf{A}^{*h}\mathbf{B}^{*} \right| \leq \epsilon$ for all $h \in \{0, \dots, H' - 1\}$

Implicit Bias of Gradient Descent Leads to Extrapolation

Theory

Proposition: Existence of Non-Extrapolating Models

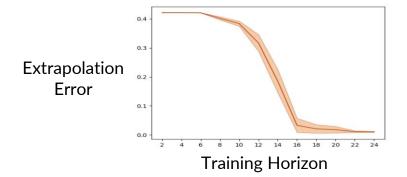
When D > H, for any $\epsilon > 0$, H' > H, and ground truth LDS $\mathbf{A}^*, \mathbf{B}^*, \mathbf{C}^*$, there exist model parameters $\mathbf{A}, \mathbf{B}, \mathbf{C}$ that minimize $\mathcal{L}_H(\cdot)$ but do not ϵ -extrapolate to horizon H'

Theorem: GD Leads to Extrapolating Model

When $D > H > 2D^*$, if GD learns model parameters $\mathbf{A}, \mathbf{B}, \mathbf{C}$ that minimize $\mathcal{L}_H(\cdot)$, then for any $\epsilon > 0$ and H' > H, the parameters ϵ -extrapolate to horizon H'

Experiments

- Validate theory (with linear models)
- Demonstrate theoretical results with neural networks



Outline

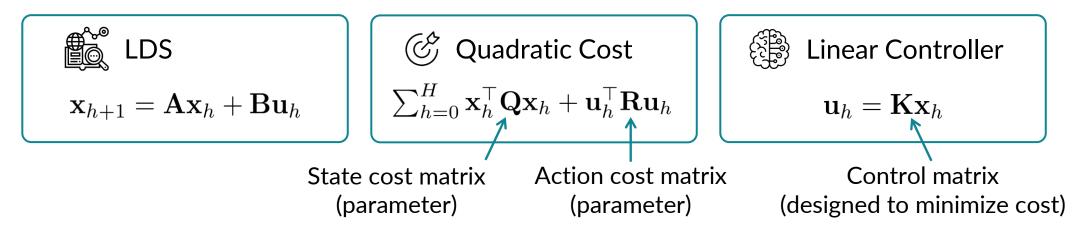
Offline System Identification: Extrapolation to Longer Horizon
 in Overparameterized Linear Models

Optimal Control: Extrapolation to Unseen Initial States in Overparameterized Linear Controllers

Conclusion

Linear Quadratic Regulator

A fundamental problem in control theory is the **linear quadratic regulator** (LQR):



Set of seen initial states *S* induces a training cost:

$$cost_{\mathcal{S}}(\mathbf{K}) = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}_0 \in \mathcal{S}} \sum_{h=0}^{H} \mathbf{x}_h^{\top} (\mathbf{Q} + \mathbf{K}^{\top} \mathbf{R} \mathbf{K}) \mathbf{x}_h$$

We study practically motivated setting where multiple controllers minimize training cost

Consider learning controller \mathbf{K}_{GD} by running GD over training cost

Q of prime importance: Does \mathbf{K}_{GD} extrapolate to **unseen initial states**?

Quantifying Extrapolation

Optimality Condition

A controller \mathbf{K} minimizes the training cost if and only if $\|(\mathbf{A} + \mathbf{B}\mathbf{K})\mathbf{x}_0\|^2 = 0$ for all $\mathbf{x}_0 \in S$

 \mathbf{K} sends \mathbf{x}_0 to zero

Definition: Error in Extrapolation to Unseen Initial States

 $\mathcal{E}(\mathbf{K}) := \frac{1}{|\mathcal{U}|} \sum_{\mathbf{x}_0 \in \mathcal{U}} \|(\mathbf{A} + \mathbf{B}\mathbf{K})\mathbf{x}_0\|^2$, where \mathcal{U} is a basis of \mathcal{S}^{\perp} (unseen subspace)

Baseline Controllers

Perfectly Extrapolating \mathbf{K}_{ext}

Satisfies $(\mathbf{A} + \mathbf{B}\mathbf{K}_{\mathrm{ext}})\mathbf{x}_0 = \mathbf{0}$ for all \mathbf{x}_0

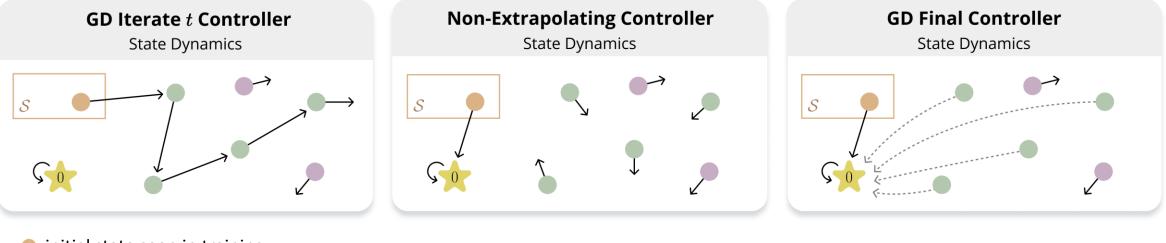
Minimizes training cost and $\mathcal{E}(\mathbf{K}_{\mathrm{ext}}) = 0$

 $\left\{ \begin{array}{ll} \textbf{Non-Extrapolating } \mathbf{K}_{no\text{-}ext} \\ \textbf{Satisfies } (\mathbf{A} + \mathbf{B}\mathbf{K}_{no\text{-}ext}) \mathbf{x}_0 = \begin{cases} \mathbf{0} & , \mathbf{x}_0 \in \mathcal{S} \\ \mathbf{A}\mathbf{x}_0 & , \mathbf{x}_0 \in \mathcal{U} \end{cases} \\ \textbf{Minimizes training cost but} \\ \mathcal{E}(\mathbf{K}_{no\text{-}ext}) \text{ is typically high} \end{cases} \right.$

Intuition: Extrapolation is Determined by Exploration

Intuition Behind Our Results

Extrapolation of \mathbf{K}_{GD} is determined by exploration induced by system from seen initial states



- initial state seen in training
- explored state
- unexplored state

Theoretical Analysis

Proposition: Extrapolation Requires Exploration

- For states orthogonal to those reached during GD, $\, K_{
 m GD}$ and $\, K_{
 m no-ext}$ produce identical controls
- There exist non-exploratory systems in which: $\mathcal{E}(\mathbf{K}_{GD})=\mathcal{E}(\mathbf{K}_{no\text{-ext}})$

Proposition: Extrapolation in Exploration-Inducing Setting

There exist exploration-inducing settings in which: $\mathcal{E}(\mathbf{K}_{GD}) << \mathcal{E}(\mathbf{K}_{no\text{-ext}})$

Theorem: Extrapolation in Typical Setting

When **A** is random Gaussian: $\mathcal{E}(\mathbf{K}_{\mathrm{GD}}) \leq \mathcal{E}(\mathbf{K}_{\mathrm{no-ext}}) - \Omega\left(\eta \cdot \frac{H^2}{D}\right)$ Learning rate Horizon in expectation, and with high probability if D is large

in expectation, and with high probability if D is large

Intuition: random system generically induces exploration (formalized via random matrix theory + topology)

Experiments: Non-Linear Systems and Neural Network Controllers

Our Theory

Linear system induces exploration from seen initial states

linear controller typically extrapolates

19 / 23

Experiments

Phenomenon extends to non-linear systems and neural network controllers

Pendulum Control Problem (analogous experiments for a quadcopter control problem) target state initial state seen in training initial state unseen in training

GD controller extrapolates despite existence of non-extrapolating controllers!

Outline

Offline System Identification: Extrapolation to Longer Horizon
 in Overparameterized Linear Models

Optimal Control: Extrapolation to Unseen Initial States in Overparameterized Linear Controllers

Recap

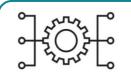
Learning to control critical systems via trial & error is prohibitively costly/dangerous

Natural approach: offline system identification and optimal control

Breakthrough results with overparameterized models trained by gradient descent (GD)

 1
 Fueled by implicit biases of GD, which lead to out-of-distribution generalization (extrapolation)

Theory: for overparameterized linear models:



Offline System Identification

If training horizon is sufficiently long, **GD extrapolates to longer horizon**

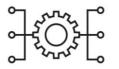
Optimal Control

If exploration induced by system from initial states seen in training is sufficient, **GD extrapolates to unseen initial states**

Experiments: phenomena extend to **neural networks**

Practical Implications

Our results suggest avenues for improving extrapolation in practical settings:



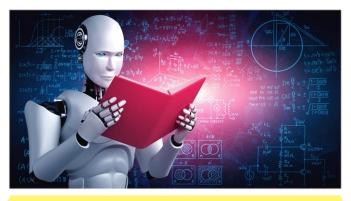
Offline System Identification

Developing algorithms for inferring required training horizon

Optimal Control

Developing algorithms for selecting exploration promoting initial states to train on

For practical progress in control of critical systems:



Theory may be necessary

Thank You!

Work supported by:

Apple scholars in AI/ML PhD fellowship, Google Research Scholar Award, Google Research Gift, the Yandex Initiative in Machine Learning, the Israel Science Foundation (grant 1780/21), Len Blavatnik and the Blavatnik Family Foundation, Tel Aviv University Center for AI and Data Science, and Amnon and Anat Shashua