Implicit Regularization in Deep Learning: Lessons Learned from Matrix and Tensor Factorization

Nadav Cohen

Tel Aviv University

AI Week by Tel Aviv University

23 February 2021

Sources

Implicit Regularization in Deep Matrix Factorization

Arora + C + Hu + Luo (alphabetical order) NeurIPS 2019

Implicit Regularization in Deep Learning May Not Be Explainable by Norms

Razin + **C** NeurIPS 2020

Implicit Regularization in Tensor Factorization

Razin* + Maman* + *C Preprint*

Collaborators

Sanjeev Arora

Wei Hu

Yuping Luo

Noam Razin

Asaf Maman

Outline

1 Implicit Regularization in Deep Learning

2 Matrix Factorization

3 Tensor Factorization

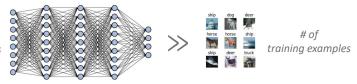
4 Tensor Rank as Measure of Complexity

5 Conclusion

Generalization in Deep Learning

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized



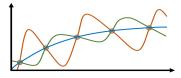
of learned weights

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

of learned weights

⇒ many possible solutions (predictors) fit training data

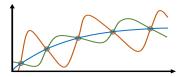


Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

of learned weights

 \implies many possible solutions (predictors) fit training data



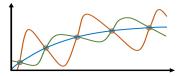
Variants of gradient descent (GD) usually find one of these solutions

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

of learned weights

 \implies many possible solutions (predictors) fit training data



Variants of gradient descent (GD) usually find one of these solutions

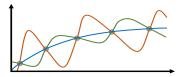
With "natural" data solution found often generalizes well

Generalization in Deep Learning

Deep neural networks (NNs) are typically overparameterized

of learned weights

 \implies many possible solutions (predictors) fit training data



Variants of gradient descent (GD) usually find one of these solutions

With "natural" data solution found often generalizes well

Even without explicit regularization!

Implicit Reg in Matrix/Tensor Factorization

Conventional Wisdom: Implicit Regularization

Conventional Wisdom

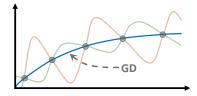
Implicit regularization minimizes "complexity":

Conventional Wisdom: Implicit Regularization

Conventional Wisdom

Implicit regularization minimizes "complexity":

• GD fits training data with predictor of lowest possible complexity



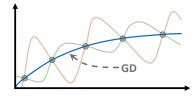
6 / 26

Conventional Wisdom: Implicit Regularization

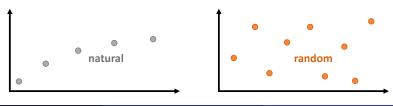
Conventional Wisdom

Implicit regularization minimizes "complexity":

• GD fits training data with predictor of lowest possible complexity



• Natural data can be fit with low complexity, other data cannot



<u>Goal</u>

Mathematically formalize implicit regularization in deep learning (DL)

<u>Goal</u>

Mathematically formalize implicit regularization in deep learning (DL)

Challenge

We lack definitions for predictor complexity that are:

<u>Goal</u>

Mathematically formalize implicit regularization in deep learning (DL)

Challenge

We lack definitions for predictor complexity that are:

• quantitative (admit generalization bounds)

test error \leq train error + O(complexity / (# of train examples))

<u>Goal</u>

Mathematically formalize implicit regularization in deep learning (DL)

Challenge

We lack definitions for predictor complexity that are:

• quantitative (admit generalization bounds)

test error \leq train error + O(complexity / (# of train examples))

• and capture essence of natural data (allow its fit with low complexity)

Outline

Implicit Regularization in Deep Learning

2 Matrix Factorization

3) Tensor Factorization

4 Tensor Rank as Measure of Complexity

5 Conclusion

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF of WALL STREET	
Bob	4	?	?	4	observations $\{y_{ij}\}_{(i,j)\in\Omega}$
Alice	?	5	4 🗸	?	
Joe	?	5	?	?	

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME		
Bob	4	?	?	4 🥌	observations $\left\{y_{ij} ight\}_{(i,j)\in\Omega}$
Alice	?	5	4 👡	?	
Joe	?	5	?	?	

 $d \times d'$ matrix completion \longleftrightarrow prediction from $\{1, ..., d\} \times \{1, ..., d'\}$ to \mathbb{R}

9 / 26

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF of WALL STREET	
Bob	4	?	?	4	observations $\left\{y_{ij}\right\}_{(i,j)\in\Omega}$
Alice	?	5	4 🗸	?	
Joe	?	5	?	?	

d imes d' matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$

value of entry $(i,j) \iff$ label of input (i,j)

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF of WALL STREET	
Bob	4	?	?	4 🦟	observations $\{y_{ij}\}_{(i,j)\in\Omega}$
Alice	?	5	4 🗸	?	
Joe	?	5	?	?	

d imes d' matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$

value of entry $(i,j) \iff$ label of input (i,j)observed entries \iff train data

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF of WALLSTREET	
Bob	4	?	?	4	observations $\left\{y_{ij}\right\}_{(i,j)\in\Omega}$
Alice	?	5	4 🗸	?	
Joe	?	5	?	?	

d imes d' matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$

value of entry $(i,j) \iff$ label of input (i,j)

observed entries \longleftrightarrow train data

unobserved entries \iff test data

Matrix Completion \longleftrightarrow Two-Dimensional Prediction

Matrix completion: recover unknown matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF of WALLSTREET	
Bob	4	?	?	4	observations $\left\{y_{ij}\right\}_{(i,j)\in\Omega}$
Alice	?	5	4 🗸	?	
Joe	?	5	?	?	

d imes d' matrix completion \longleftrightarrow prediction from $\{1,...,d\} imes \{1,...,d'\}$ to $\mathbb R$

value of entry $(i,j) \iff$ label of input (i,j)

observed entries \iff train data

unobserved entries \iff test data

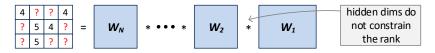
matrix \longleftrightarrow predictor

Nadav Cohen (TAU) Implicit Reg in Matrix/Tensor Factorization

Matrix Factorization ↔ Linear Neural Network

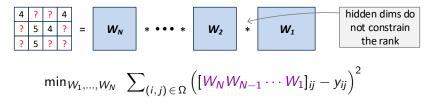
Matrix factorization (MF):

Parameterize solution as product of matrices and fit observations via GD



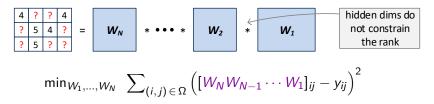
Matrix factorization (MF):

Parameterize solution as product of matrices and fit observations via GD



Matrix factorization (MF):

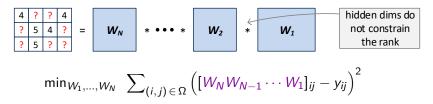
Parameterize solution as product of matrices and fit observations via GD



 $MF \leftrightarrow matrix \text{ completion via linear NN (with no explicit regularization!)}$

Matrix factorization (MF):

Parameterize solution as product of matrices and fit observations via GD



 $MF \leftrightarrow matrix \text{ completion via linear NN (with no explicit regularization!)}$

Empirical Phenomenon (*Gunasekar et al. 2017*) MF (with small init and step size) accurately recovers low rank matrices

Implicit Regularization = Norm Minimization?

Classic Result (Candes & Recht 2008)

If (i) unknown matrix has low rank; (ii) observations are sufficiently many, then fitting them while minimizing nuclear norm yields accurate recovery

11 / 26

Classic Result (Candes & Recht 2008)

If (i) unknown matrix has low rank; (ii) observations are sufficiently many, then fitting them while minimizing nuclear norm yields accurate recovery

Conjecture (Gunasekar et al. 2017)

MF of depth 2 (with small init and step size) fits observations while minimizing nuclear norm

11 / 26

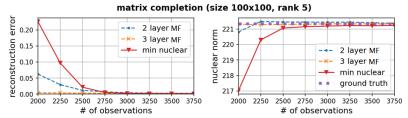
Classic Result (Candes & Recht 2008)

If (i) unknown matrix has low rank; (ii) observations are sufficiently many, then fitting them while minimizing nuclear norm yields accurate recovery

Conjecture (Gunasekar et al. 2017)

MF of depth 2 (with small init and step size) fits observations while minimizing nuclear norm

Experiment



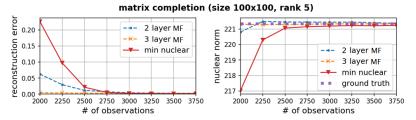
Classic Result (Candes & Recht 2008)

If (i) unknown matrix has low rank; (ii) observations are sufficiently many, then fitting them while minimizing nuclear norm yields accurate recovery

Conjecture (Gunasekar et al. 2017)

MF of depth 2 (with small init and step size) fits observations while minimizing nuclear norm

Experiment



MF gives up min nuclear norm for low rank (more so with depth)!

Dynamical Analysis of Implicit Regularization

Dynamical Analysis of Implicit Regularization

Denote:

 $W_e := W_N \cdots W_1$ — end matrix of MF

Dynamical Analysis of Implicit Regularization

Denote:

 $W_e := W_N \cdots W_1$ — end matrix of MF $\{\sigma_r\}_r$ — singular vals of W_e

Dynamical Analysis of Implicit Regularization

Denote:

 $W_e := W_N \cdots W_1$ — end matrix of MF $\{\sigma_r\}_r$ — singular vals of W_e

Theorem

In training MF of depth N (with small init and step size): $\frac{d}{dt}\sigma_r\propto\sigma_r^{2-2/N}$

Dynamical Analysis of Implicit Regularization

Denote:

 $W_e := W_N \cdots W_1$ — end matrix of MF $\{\sigma_r\}_r$ — singular vals of W_e

Theorem

In training MF of depth N (with small init and step size): $\frac{d}{dt}\sigma_r\propto\sigma_r^{2-2/N}$

Depth speeds up (slows down) large (small) singular vals!

Dynamical Analysis of Implicit Regularization

Denote:

 $W_e := W_N \cdots W_1$ — end matrix of MF $\{\sigma_r\}_r$ — singular vals of W_e

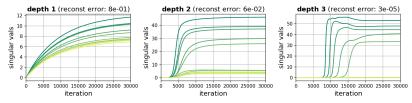
Theorem

In training MF of depth N (with small init and step size): $\frac{d}{dt}\sigma_r\propto\sigma_r^{2-2/N}$

Depth speeds up (slows down) large (small) singular vals!

Experiment

Completion of low rank matrix via MF



Dynamical Analysis of Implicit Regularization

Denote:

 $W_e := W_N \cdots W_1$ — end matrix of MF $\{\sigma_r\}_r$ — singular vals of W_e

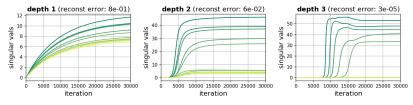
Theorem

In training MF of depth N (with small init and step size): $\frac{d}{dt}\sigma_r\propto\sigma_r^{2-2/N}$

Depth speeds up (slows down) large (small) singular vals!

Experiment

Completion of low rank matrix via MF



MF depth leads to larger gaps between singular vals (lower rank)!

Nadav Cohen (TAU)

Implicit Reg in Matrix/Tensor Factorization

Dynamical Analysis of Implicit Regularization (2)

Practical Application

Implicit Rank-Minimizing Autoencoder

Li Jing Facebook AI Research New York **Jure Zbontar** Facebook AI Research New York Yann LeCun

Facebook AI Research New York

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

"rank ... is implicitly minimized by relying on the fact that gradient descent ... in multi-layer linear networks leads to minimum-rank ..."

Implicit Regularization \neq Norm Minimization

Implicit Regularization \neq Norm Minimization

Theorem

In training MF of depth N (with small init and step size): $\frac{d}{dt}\sigma_r\propto\sigma_r^{2-2/N}$

Implicit Regularization \neq Norm Minimization

Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign

Implicit Regularization \neq Norm Minimization

Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign

$$\left(\begin{array}{cc} ? & 1\\ 1 & 0 \end{array}\right)$$

Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign

		quantity	minimizer
?	1		
$\left(1\right)$	o)		

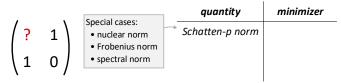
Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign

		quantity	minimizer
?	1	Schatten-p norm	
\ 1	0 /		

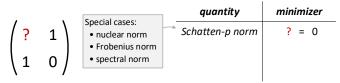
Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign



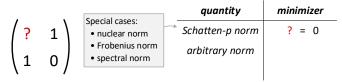
Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign



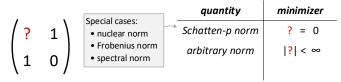
Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign



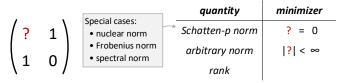
Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign



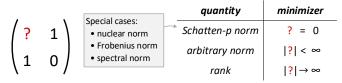
Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign



Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign



Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign

Corollary

In training MF of depth $N \ge 2$, $det(W_e)$ does not change sign

Consider the matrix completion problem:

By corollary, if det(W_e) > 0 at init: fitting observations \implies $|?| \rightarrow \infty$

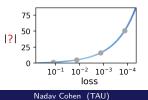
Corollary

In training MF of depth $N \ge 2$, $det(W_e)$ does not change sign

Consider the matrix completion problem:

By corollary, if det(W_e) > 0 at init: fitting observations \implies $|?| \rightarrow \infty$

Experiment



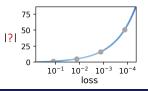
Corollary

In training MF of depth $N \ge 2$, det (W_e) does not change sign

Consider the matrix completion problem:

By corollary, if det(W_e) > 0 at init: fitting observations \implies $|?| \rightarrow \infty$

Experiment



There are settings where implicit regularization of MF drives all norms to ∞ while minimizing rank!

Outline

- Implicit Regularization in Deep Learning
- 2 Matrix Factorization
- 3 Tensor Factorization
 - 4 Tensor Rank as Measure of Complexity

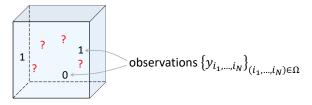
5 Conclusion

Tensor Factorization

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

Tensor: multi-dim array

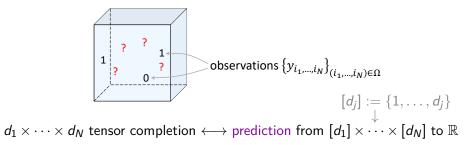
Tensor: multi-dim array



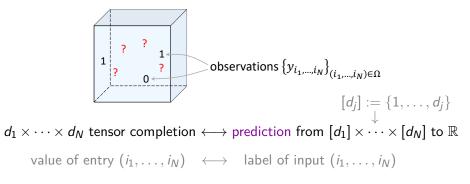
Tensor Factorization

Tensor Completion \longleftrightarrow Multi-Dimensional Prediction

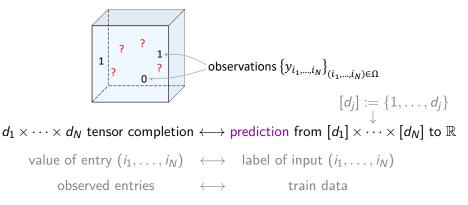
Tensor: multi-dim array



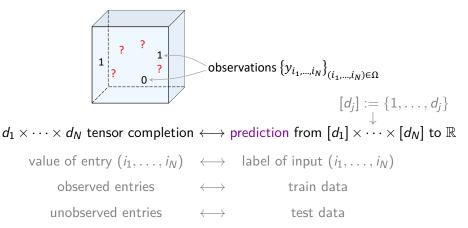
Tensor: multi-dim array



Tensor: multi-dim array

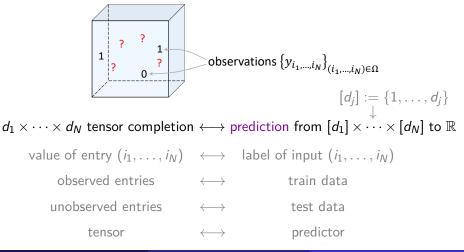


Tensor: multi-dim array



Tensor: multi-dim array

Tensor completion: recover unknown tensor given subset of entries



Nadav Cohen (TAU) Implicit

Tensor Factorization

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum_{(i_1,\ldots,i_N) \in \Omega} \left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N \right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N} \right)^2$$

Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

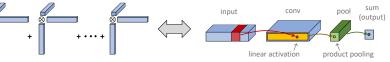
Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum_{(i_1,\ldots,i_N) \in \Omega} \left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N \right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N} \right)^2$$

 $\mathsf{TF}\longleftrightarrow\mathsf{tensor}$ completion via NN with multiplicative non-linearity

Tensor Factorization

Non-Linear Neural Network



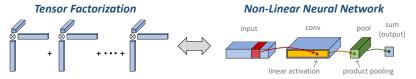
Tensor Factorization \longleftrightarrow Non-Linear Neural Network

Tensor factorization (TF):

Parameterize solution as sum of outer products and fit observations via GD

$$\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum_{(i_1,\ldots,i_N) \in \Omega} \left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N \right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N} \right)^2$$

$\mathsf{TF}\longleftrightarrow\mathsf{tensor}$ completion via NN with multiplicative non-linearity



Experiment

TF (with small init and step size) accurately recovers low rank tensors

Tensor Factorization

Dynamical Analysis of Implicit Regularization

Tensor Factorization

Dynamical Analysis of Implicit Regularization

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Tensor Factorization

Dynamical Analysis of Implicit Regularization

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Component norms accelerate (decelerate) when large (small)!

Dynamical Analysis of Implicit Regularization

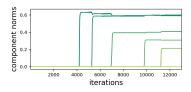
Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Component norms accelerate (decelerate) when large (small)!

Experiment

Completion of low rank tensor via TF



Dynamical Analysis of Implicit Regularization

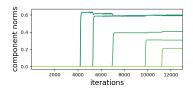
Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Component norms accelerate (decelerate) when large (small)!

Experiment

Completion of low rank tensor via TF



Training TF leads to gaps between component norms (low tensor rank)!

Dynamical Analysis of Implicit Regularization

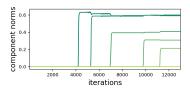
Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Component norms accelerate (decelerate) when large (small)!

Experiment

Completion of low rank tensor via TF



Training TF leads to gaps between component norms (low tensor rank)!

Theorem leads to:

Proposition

If tensor completion has rank 1 *solution, then under technical conditions TF will reach it*

Nadav Cohen (TAU)

Implicit Reg in Matrix/Tensor Factorization

Al Week, Feb'21 18 / 26

Outline

- Implicit Regularization in Deep Learning
- 2 Matrix Factorization
- 3 Tensor Factorization
- 4 Tensor Rank as Measure of Complexity

5 Conclusion

Challenge: Formalizing Notion of Complexity

Goal

Mathematically formalize implicit regularization in deep learning (DL)

Challenge

We lack definitions for predictor complexity that are:

• quantitative (admit generalization bounds)

test error \leq train error + O(complexity / (# of train examples))

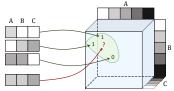
• and capture essence of natural data (allow its fit with low complexity)

X high complexity

We saw:

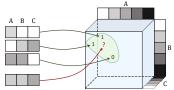
We saw:

• Tensor completion \longleftrightarrow multi-dim prediction

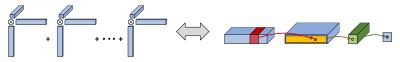


We saw:

• Tensor completion \longleftrightarrow multi-dim prediction

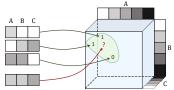


• Tensor factorization \longleftrightarrow non-linear NN

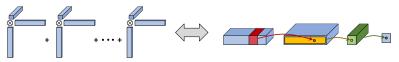


We saw:

• Tensor completion \longleftrightarrow multi-dim prediction



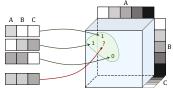
• Tensor factorization \longleftrightarrow non-linear NN



• Implicit regularization favors tensors (predictors) of low rank

We saw:

 $\bullet \ \ \mathsf{Tensor} \ \mathsf{completion} \ \longleftrightarrow \ \mathsf{multi-dim} \ \mathsf{prediction}$



• Tensor factorization \longleftrightarrow non-linear NN

• Implicit regularization favors tensors (predictors) of low rank

Question

Can tensor rank serve as measure of complexity for predictors?

Tensor Rank as Measure of Complexity

Experiment: Fitting Data with Low Tensor Rank

Experiment

Fitting data with predictors of low tensor rank

Experiment

Fitting data with predictors of low tensor rank

Datasets:

Experiment

Fitting data with predictors of low tensor rank

Datasets:

- MNIST **Main and Fashion-MNIST Main and Fashion-MNIST Main and Fashion-MNIST**
- Each compared against:

(i) random images (same labels) (ii) random labels (same images)

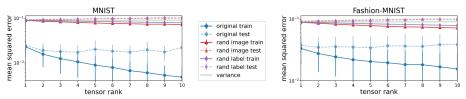
Experiment

Fitting data with predictors of low tensor rank

Datasets:

- MNIST 2 and Fashion-MNIST 2 (one-vs-all)
- Each compared against:

(i) random images (same labels) (ii) random labels (same images)



Original data fit far more accurately than random (leading to low test err)!

Experiment

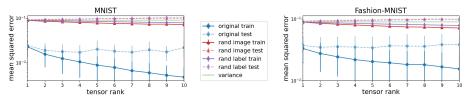
Fitting data with predictors of low tensor rank

Datasets:

- MNIST 2 and Fashion-MNIST 2 (one-vs-all)
- Each compared against:

(i) random images (same labels) (ii) ra

(ii) random labels (same images)



Original data fit far more accurately than random (leading to low test err)!

Tensor rank may shed light on both implicit regularization of NNs and properties of real-world data translating it to generalization

Nadav Cohen (TAU)

Outline

- Implicit Regularization in Deep Learning
- 2 Matrix Factorization
- 3 Tensor Factorization
- 4 Tensor Rank as Measure of Complexity

5 Conclusion

Conclusion

Understanding implicit regularization in DL:

Understanding implicit regularization in DL:

• Challenge: lack measures of complexity that capture natural data

Understanding implicit regularization in DL:

• Challenge: lack measures of complexity that capture natural data

Matrix factorization:

Understanding implicit regularization in DL:

• <u>Challenge</u>: lack measures of complexity that capture natural data

Matrix factorization:

• Equivalent to two-dim prediction via linear NN

Understanding implicit regularization in DL:

• <u>Challenge</u>: lack measures of complexity that capture natural data

Matrix factorization:

- Equivalent to two-dim prediction via linear NN
- Conjecture: implicit regularization minimizes norm

Understanding implicit regularization in DL:

• <u>Challenge</u>: lack measures of complexity that capture natural data

Matrix factorization:

- Equivalent to two-dim prediction via linear NN
- Conjecture: implicit regularization minimizes norm
- Dynamical analysis: implicit regularization minimizes rank (not norm)

Understanding implicit regularization in DL:

• <u>Challenge</u>: lack measures of complexity that capture natural data

Matrix factorization:

- Equivalent to two-dim prediction via linear NN
- Conjecture: implicit regularization minimizes norm
- Dynamical analysis: implicit regularization minimizes rank (not norm)

Tensor factorization:

Understanding implicit regularization in DL:

• <u>Challenge</u>: lack measures of complexity that capture natural data

Matrix factorization:

- Equivalent to two-dim prediction via linear NN
- Conjecture: implicit regularization minimizes norm
- Dynamical analysis: implicit regularization minimizes rank (not norm)

Tensor factorization:

• Equivalent to multi-dim prediction via non-linear NN

Understanding implicit regularization in DL:

• <u>Challenge</u>: lack measures of complexity that capture natural data

Matrix factorization:

- Equivalent to two-dim prediction via linear NN
- Conjecture: implicit regularization minimizes norm
- Dynamical analysis: implicit regularization minimizes rank (not norm)

Tensor factorization:

- Equivalent to multi-dim prediction via non-linear NN
- Dynamical analysis: implicit regularization minimizes tensor rank

Understanding implicit regularization in DL:

• Challenge: lack measures of complexity that capture natural data

Matrix factorization:

- Equivalent to two-dim prediction via linear NN
- Conjecture: implicit regularization minimizes norm
- Dynamical analysis: implicit regularization minimizes rank (not norm)

Tensor factorization:

- Equivalent to multi-dim prediction via non-linear NN
- Dynamical analysis: implicit regularization minimizes tensor rank

Tensor rank as measure of complexity may capture natural data!

- Implicit Regularization in Deep Learning
- 2 Matrix Factorization
- 3 Tensor Factorization
- 4 Tensor Rank as Measure of Complexity

5 Conclusion

Thank You

Work supported by: Amnon and Anat Shashua, Len Blavatnik and the Blavatnik Family Foundation, Yandex Initiative in Machine Learning, Google Research Gift

Nadav Cohen (TAU)

Implicit Reg in Matrix/Tensor Factorization