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Optimization and Generalization in Deep Learning via Trajectories

Optimization

Fitting training data by minimizing an objective (loss) function
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Optimization and Generalization in Deep Learning via Trajectories

Generalization

Controlling gap between train and test errors, e.g. by adding regularization
term/constraint to objective
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Optimization and Generalization in Deep Learning via Trajectories

Classical Machine Learning

Theme: make sure objective is convex!

Optimization
Single global minimum, efficiently attainable
Choice of algorithm affects only speed of convergence

Generalization
Bias-variance trade-off:

regularization train/test gap train err
more ↘ ↗
less ↗ ↘

Well developed theory

Nadav Cohen (TAU & IMUBIT) Analyzing DL via Trajectories of GD AI Week @ TAU, Nov’19 5 / 27



Optimization and Generalization in Deep Learning via Trajectories

Classical Machine Learning

Theme: make sure objective is convex!

Optimization
Single global minimum, efficiently attainable
Choice of algorithm affects only speed of convergence

Generalization
Bias-variance trade-off:

regularization train/test gap train err
more ↘ ↗
less ↗ ↘

Well developed theory

Nadav Cohen (TAU & IMUBIT) Analyzing DL via Trajectories of GD AI Week @ TAU, Nov’19 5 / 27



Optimization and Generalization in Deep Learning via Trajectories

Classical Machine Learning

Theme: make sure objective is convex!

Optimization
Single global minimum, efficiently attainable
Choice of algorithm affects only speed of convergence

Generalization
Bias-variance trade-off:

regularization train/test gap train err
more ↘ ↗
less ↗ ↘

Well developed theory

Nadav Cohen (TAU & IMUBIT) Analyzing DL via Trajectories of GD AI Week @ TAU, Nov’19 5 / 27



Optimization and Generalization in Deep Learning via Trajectories

Classical Machine Learning

Theme: make sure objective is convex!

Optimization
Single global minimum, efficiently attainable
Choice of algorithm affects only speed of convergence

Generalization
Bias-variance trade-off:

regularization train/test gap train err
more ↘ ↗
less ↗ ↘

Well developed theory

Nadav Cohen (TAU & IMUBIT) Analyzing DL via Trajectories of GD AI Week @ TAU, Nov’19 5 / 27



Optimization and Generalization in Deep Learning via Trajectories

Deep Learning (DL)

Theme: allow objective to be non-convex

Optimization
Multiple minima, a-priori not efficiently attainable
Variants of gradient descent (GD) somehow reach global min

Generalization
Some global minima generalize well, others don’t
With typical data, solution found by GD often generalizes well
No bias-variance trade-off — regularization implicitly induced by GD

Not well understood
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Optimization and Generalization in Deep Learning via Trajectories

Analysis via Trajectories of Gradient Descent
Perspective

Language of classical learning theory may be insufficient for DL

Need to carefully analyze course of learning, i.e. trajectories of GD!

Case will be made via deep linear neural networks
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Case Study: Linear Neural Networks
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Case Study: Linear Neural Networks

Sources
On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization

Arora + C + Hazan (alphabetical order)
International Conference on Machine Learning (ICML) 2018

A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Arora + C + Golowich + Hu (alphabetical order)
International Conference on Learning Representations (ICLR) 2019

Implicit Regularization in Deep Matrix Factorization
Arora + C + Hu + Luo (alphabetical order)
Conference on Neural Information Processing Systems (NeurIPS) 2019
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Case Study: Linear Neural Networks

Collaborators

Sanjeev Arora Elad Hazan

Wei Hu Noah GolowichYuping Luo
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Case Study: Linear Neural Networks

Linear Neural Networks
Linear neural networks (LNN) are fully-connected neural networks with
linear (no) activation

W1 W2 WNx y = WN • • • W2W1 x

LNN realize only linear mappings, but are highly non-trivial in terms of
optimization and generalization

Studied extensively as surrogate for non-linear neural networks:
Saxe et al. 2014
Kawaguchi 2016
Advani & Saxe 2017
Hardt & Ma 2017

Laurent & Brecht 2018
Gunasekar et al. 2018
Ji & Telgarsky 2019
Lampinen & Ganguli 2019
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Case Study: Linear Neural Networks Trajectory Analysis

Implicit Preconditioning
Question
How does end-to-end matrix W1:N :=WN · · ·W1 move on GD trajectories?

Theorem
W1:N follows end-to-end dynamics:

vec
[
W1:N(t + 1)

]
←[ vec

[
W1:N(t)

]
− η · PW1:N (t) · vec

[
∇`(W1:N(t))

]
where PW1:N (t) is a preconditioner (PSD matrix) that “reinforces” W1:N(t)

Adding (redundant) linear layers to classic linear model induces
preconditioner promoting movement in directions already taken!
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Case Study: Linear Neural Networks Optimization
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Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points
Prominent approach for analyzing optimization in DL (in spirit of classical
learning theory) is via critical points in the objective

Non-strict saddleGood local minimum
( ≈ global minimum)

Poor local minimum Strict saddle

Result (cf. Ge et al. 2015; Lee et al. 2016)
If: (1) there are no poor local minima; and (2) all saddle points are strict,
then GD converges to global min
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Result (cf. Ge et al. 2015; Lee et al. 2016)
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Motivated by this, many 1 studied the validity of (1) and/or (2)
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Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points
Prominent approach for analyzing optimization in DL (in spirit of classical
learning theory) is via critical points in the objective

Non-strict saddleGood local minimum
( ≈ global minimum)

Poor local minimum Strict saddle

(1) (2)

Result (cf. Ge et al. 2015; Lee et al. 2016)
If: (1) there are no poor local minima; and (2) all saddle points are strict,
then GD converges to global min

Motivated by this, many 1 studied the validity of (1) and/or (2)

Limitation: deep (≥ 3 layer) models violate (2) (consider all weights= 0)!

1 e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018
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Case Study: Linear Neural Networks Optimization

Applying Our Trajectory Analysis

Theorem
Assume `(·) = `2 loss and LNN is init such that:

1 `(W1:N) < `(W ) ,∀W s.t. σmin(W ) ≤ c

2 ‖W>
j+1Wj+1 −WjW>

j ‖F ≤ O(c2) ,∀j

Then, GD with step size η ≤ O(c4) gives: loss(iteration t) ≤ e−Ω(c2ηt)

Claim
Our assumptions on init:

Are necessary (violating any of them can lead to divergence)

For out dim 1, hold with const prob under random “balanced” init

Guarantee of efficient (linear rate) convergence to global min!
Most general guarantee to date for GD efficiently training deep net.
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Case Study: Linear Neural Networks Optimization

Effect of Depth on Optimization

Viewpoint of classical learning theory:
Convex optimization is easier than non-convex

Hence depth complicates optimization

Our trajectory analysis reveals: not always true...
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Case Study: Linear Neural Networks Optimization

Acceleration by Depth

End-to-end dynamics for LNN:
vec

[
W1:N(t + 1)

]
←[ vec

[
W1:N(t)

]
− η · PW1:N (t) · vec

[
∇`(W1:N(t))

]
Claim
∀p > 2, ∃ settings where `(·) = `p loss and end-to-end dynamics reach
global min arbitrarily faster than GD

Experiment
Regression problem from UCI ML Repository ; `4 loss

Depth can speed-up GD,
even without any gain in
expressiveness, and despite
introducing non-convexity!
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Case Study: Linear Neural Networks Generalization

Setting: Matrix Completion
Matrix completion: recover low rank matrix given subset of entries

Netflix Prize

min rank(W ) s.t. W agrees with observations

Convex Programming Approach
Replace rank by nuclear norm:

min ‖W ‖nuclear s.t. W agrees with observations
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Case Study: Linear Neural Networks Generalization

Setting: Matrix Completion
Matrix completion: recover low rank matrix given subset of entries

Netflix Prize

min rank(W ) s.t. W agrees with observations

Convex Programming Approach
Replace rank by nuclear norm:

min ‖W ‖nuclear s.t. W agrees with observations

Perfectly recovers if observations are sufficiently many 1

1 Cf. Candes & Recht 2008
Nadav Cohen (TAU & IMUBIT) Analyzing DL via Trajectories of GD AI Week @ TAU, Nov’19 20 / 27
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Case Study: Linear Neural Networks Generalization

Linear Neural Network ←→ “Deep Matrix Factorization”
Deep Learning Approach (“deep matrix factorization”)

Parameterize solution as LNN and fit observations using GD

W2 W1= *
?

?

4

5

5

?

?

4

?

?

?

4

WN * *

hidden dims do 
not necessarily 
constrain rank

Past Work (Gunasekar et al. 2017)
For depth 2 only:

Experiments: recovery often accurate (w/o explicit regularization)

Conjecture: GD converges to min nuclear norm solution

Theorem: conjecture holds for certain restricted case
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?

Experiment
LNN vs. min nuclear norm

Depth enhanced implicit regularization towards low rank

Implicit regularization 6= nuclear norm minimization

Theorem
In restricted case where Gunasekar et al. proved depth 2 minimizes nuclear
norm, any depth > 2 does so as well

Capturing implicit regularization via single norm may not be possible
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Case Study: Linear Neural Networks Generalization

Applying Our Trajectory Analysis

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:
vec

[
W1:N(t + 1)

]
←[ vec

[
W1:N(t)

]
− η · PW1:N (t) · vec

[
∇`(W1:N(t))

]
Theorem
Let {σr (t)}r be W1:N(t)’s singular vals. Then σr (t) evolves ∝ σr

2−2/N(t).

=⇒ σr (t) moves slower when small, faster when large

Experiment
Evolution of singular vals during GD on LNN

Depth leads to larger gaps between singular vals (lower rank)!
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Conclusion

Recap

Perspective
Understanding optimization and generalization in deep learning:

Language of classical learning theory insufficient
Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks
Trajectory analysis:

Depth induces preconditioner promoting movement in directions taken

Optimization:
Guarantee of efficient convergence to global min (most general yet)
Depth can accelerate convergence (w/o any gain in expressiveness)!

Generalization:
Depth enhances implicit regularization towards low rank, yielding
generalization for problems such as matrix completion
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Thank You
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