Analyzing Optimization and Generalization in Deep Learning via Trajectories of Gradient Descent

Nadav Cohen

Tel Aviv University & IMUBIT

AI Week at Tel Aviv University

18 November 2019

Outline

Optimization and Generalization in Deep Learning via Trajectories

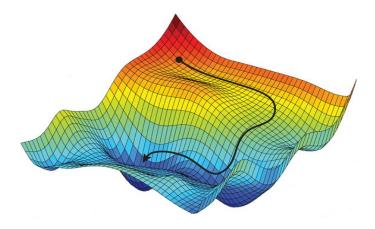
2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

3 Conclusion

Optimization

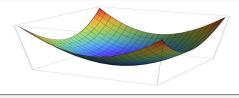
Fitting training data by minimizing an objective (loss) function



Generalization

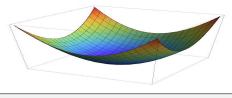
Controlling gap between train and test errors, e.g. by adding regularization term/constraint to objective

Classical Machine Learning



Theme: make sure objective is convex!

Classical Machine Learning

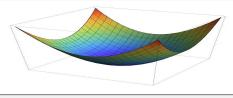


Theme: make sure objective is convex!

Optimization

- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Classical Machine Learning



Theme: make sure objective is convex!

Optimization

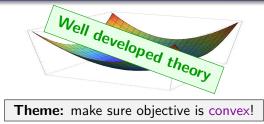
- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Generalization

Bias-variance trade-off:

	regularization		train/test gap	train err	
	more		\searrow	\nearrow	
	less		\nearrow	\searrow	
Nadav Cohen (TAU & IMUBIT) Analyzir		g DL via Trajectories of GD	AI Week	@ T.	

Classical Machine Learning



Optimization

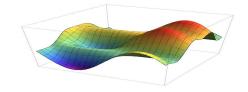
- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Generalization

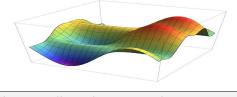
Bias-variance trade-off:

	regularization		train/test gap	train err	
	more		\searrow	\nearrow	
	less		\nearrow	\searrow	
Nadav Cohen (TAU & IMUBIT) Analyzir		ng DL via Trajectories of GD	AI Week	@ T/	

Deep Learning (DL)



Theme: allow objective to be non-convex

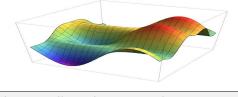


Theme: allow objective to be non-convex

Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Deep Learning (DL)



Theme: allow objective to be non-convex

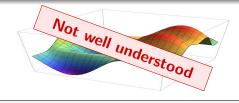
Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Generalization

- Some global minima generalize well, others don't
- With typical data, solution found by GD often generalizes well
- No bias-variance trade-off regularization implicitly induced by GD

6 / 27



Theme: allow objective to be non-convex

Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Generalization

- Some global minima generalize well, others don't
- With typical data, solution found by GD often generalizes well
- No bias-variance trade-off regularization implicitly induced by GD

Analysis via Trajectories of Gradient Descent

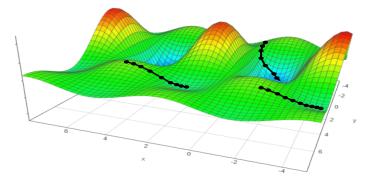
Perspective

• Language of classical learning theory may be insufficient for DL

Analysis via Trajectories of Gradient Descent

Perspective

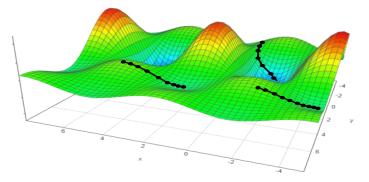
- Language of classical learning theory may be insufficient for DL
- Need to carefully analyze course of learning, i.e. trajectories of GD!



Analysis via Trajectories of Gradient Descent

Perspective

- Language of classical learning theory may be insufficient for DL
- Need to carefully analyze course of learning, i.e. trajectories of GD!



Case will be made via deep linear neural networks

7 / 27

Outline

Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

3 Conclusion

Sources

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

Arora + C + Hazan (alphabetical order) International Conference on Machine Learning (ICML) 2018

A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks

Arora + **C** + Golowich + Hu (alphabetical order) International Conference on Learning Representations (ICLR) 2019

Implicit Regularization in Deep Matrix Factorization

Arora + C + Hu + Luo (alphabetical order) Conference on Neural Information Processing Systems (NeurIPS) 2019

Collaborators

Sanjeev Arora

Elad Hazan

Yuping Luo

Wei Hu

Google

Nadav Cohen (TAU & IMUBIT)

Analyzing DL via Trajectories of GD

AI Week @ TAU, Nov'19 10 / 27

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

LNN realize only linear mappings, but are highly non-trivial in terms of optimization and generalization

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$\mathbf{x} \rightarrow W_1 \rightarrow W_2 \rightarrow \cdots \rightarrow W_N \rightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}$$

LNN realize only linear mappings, but are highly non-trivial in terms of optimization and generalization

Studied extensively as surrogate for non-linear neural networks:

- Saxe et al. 2014
- Kawaguchi 2016
- Advani & Saxe 2017
- Hardt & Ma 2017

- Laurent & Brecht 2018
- Gunasekar et al. 2018
- Ji & Telgarsky 2019
- Lampinen & Ganguli 2019

Outline

D Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

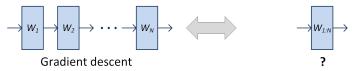
Implicit Preconditioning

Question

How does end-to-end matrix $W_{1:N} := W_N \cdots W_1$ move on GD trajectories?

Linear Neural Network

Equivalent Linear Model

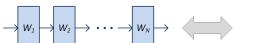


Implicit Preconditioning

Question

How does end-to-end matrix $W_{1:N} := W_N \cdots W_1$ move on GD trajectories?

Linear Neural Network



Gradient descent

Equivalent Linear Model

Preconditioned gradient descent

Theorem

W_{1:N} follows end-to-end dynamics:

 $\mathsf{vec}[W_{1:N}(t+1)] \leftrightarrow \mathsf{vec}[W_{1:N}(t)] - \eta \cdot \mathsf{P}_{W_{1:N}(t)} \cdot \mathsf{vec}[\nabla \ell(W_{1:N}(t))]$

where $P_{W_{1:N}(t)}$ is a preconditioner (PSD matrix) that "reinforces" $W_{1:N}(t)$

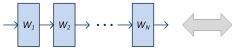
Implicit Preconditioning

Question

How does end-to-end matrix $W_{1:N} := W_N \cdots W_1$ move on GD trajectories?

Linear Neural Network

Equivalent Linear Model



Gradient descent

Preconditioned gradient descent

 $\rightarrow W_{1:N} \rightarrow$

Theorem

W_{1:N} follows end-to-end dynamics:

 $\mathsf{vec}[W_{1:N}(t+1)] \leftrightarrow \mathsf{vec}[W_{1:N}(t)] - \eta \cdot \mathsf{P}_{W_{1:N}(t)} \cdot \mathsf{vec}[\nabla \ell(W_{1:N}(t))]$

where $P_{W_{1:N}(t)}$ is a preconditioner (PSD matrix) that "reinforces" $W_{1:N}(t)$

Adding (redundant) linear layers to classic linear model induces preconditioner promoting movement in directions already taken!

Nadav Cohen (TAU & IMUBIT)

Analyzing DL via Trajectories of GD

Outline

DOptimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

• Trajectory Analysis

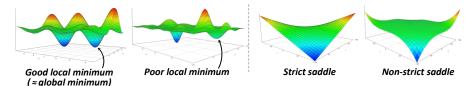
Optimization

Generalization

3 Conclusion

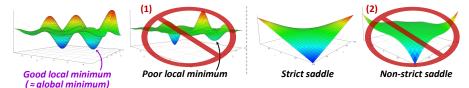
Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective



Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

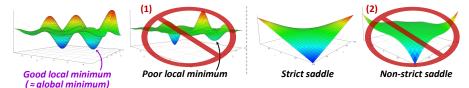


<u>Result</u> (cf. Ge et al. 2015; Lee et al. 2016)

If: (1) there are no poor local minima; and (2) all saddle points are strict, then GD converges to global min

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective



<u>Result</u> (cf. Ge et al. 2015; Lee et al. 2016)

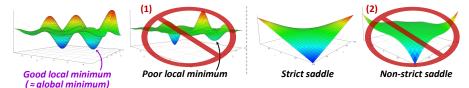
If: (1) there are no poor local minima; and (2) all saddle points are strict, then GD converges to global min

Motivated by this, many 1 studied the validity of (1) and/or (2)

¹e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective



<u>Result</u> (cf. Ge et al. 2015; Lee et al. 2016)

If: (1) there are no poor local minima; and (2) all saddle points are strict, then GD converges to global min

Motivated by this, many 1 studied the validity of (1) and/or (2)

Limitation: deep (\geq 3 layer) models violate (2) (consider all weights = 0)!

¹ e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018 Nadav Cohen (TAU & IMUBIT) Analyzing DL via Trajectories of GD AI Week @ TAU, Nov'19 15 / 27

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

•
$$\ell(W_{1:N}) < \ell(W)$$
, $\forall W \ s.t. \ \sigma_{min}(W) \leq c$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

•
$$\ell(W_{1:N}) < \ell(W)$$
, $\forall W \text{ s.t. } \sigma_{min}(W) \leq c$

2 $||W_{i+1}^{\top}W_{i+1} - W_{i}W_{i}^{\top}||_{F} \leq \mathcal{O}(c^{2})$, $\forall j$

Then, GD with step size $\eta \leq O(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

•
$$\ell(W_{1:N}) < \ell(W)$$
 , $orall W$ s.t. $\sigma_{min}(W) \leq c$

2
$$\|W_{j+1}^{\top}W_{j+1} - W_{j}W_{j}^{\top}\|_{F} \leq \mathcal{O}(c^{2})$$
, $\forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

•
$$\ell(W_{1:N}) < \ell(W)$$
 , $orall W$ s.t. $\sigma_{min}(W) \leq c$

2
$$\|W_{j+1}^{\top}W_{j+1} - W_{j}W_{j}^{\top}\|_{F} \leq \mathcal{O}(c^{2})$$
, $\forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

Are necessary (violating any of them can lead to divergence)

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

•
$$\ell(W_{1:N}) < \ell(W)$$
 , $\forall W \ s.t. \ \sigma_{min}(W) \leq c$

2
$$\|W_{j+1}^{\top}W_{j+1} - W_{j}W_{j}^{\top}\|_{F} \leq \mathcal{O}(c^{2})$$
, $\forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration $t) \leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

- Are necessary (violating any of them can lead to divergence)
- For out dim 1, hold with const prob under random "balanced" init

Applying Our Trajectory Analysis

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

•
$$\ell(W_{1:N}) < \ell(W)$$
 , $\forall W \ s.t. \ \sigma_{min}(W) \leq c$

2
$$\|W_{j+1}^{\top}W_{j+1} - W_{j}W_{j}^{\top}\|_{F} \leq \mathcal{O}(c^{2})$$
, $\forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $< e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

- Are necessary (violating any of them can lead to divergence)
- For out dim 1, hold with const prob under random "balanced" init

Guarantee of efficient (linear rate) convergence to global min! Most general guarantee to date for GD efficiently training deep net.

Nadav Cohen (TAU & IMUBIT)

Analyzing DL via Trajectories of GD

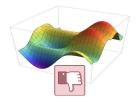
Effect of Depth on Optimization

Case Study: Linear Neural Networks Optimization

Effect of Depth on Optimization

Viewpoint of classical learning theory:

• Convex optimization is easier than non-convex

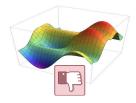


Case Study: Linear Neural Networks Optimization

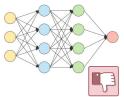
Effect of Depth on Optimization

Viewpoint of classical learning theory:

• Convex optimization is easier than non-convex



• Hence depth complicates optimization

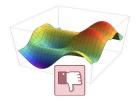


Case Study: Linear Neural Networks Optimization

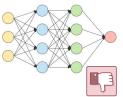
Effect of Depth on Optimization

Viewpoint of classical learning theory:

• Convex optimization is easier than non-convex



• Hence depth complicates optimization



Our trajectory analysis reveals: not always true...

Nadav Cohen (TAU & IMUBIT)

Analyzing DL via Trajectories of GD

Acceleration by Depth

Acceleration by Depth

End-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Acceleration by Depth

End-to-end dynamics for LNN:

 $\operatorname{vec}[W_{1:N}(t+1)] \leftrightarrow \operatorname{vec}[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot \operatorname{vec}[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss and end-to-end dynamics reach global min arbitrarily faster than GD

Acceleration by Depth

End-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss and end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Acceleration by Depth

End-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss and end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from UCI ML Repository ; ℓ_4 loss

Acceleration by Depth

End-to-end dynamics for LNN:

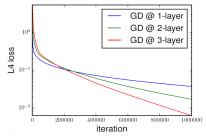
 $\operatorname{vec}[W_{1:N}(t+1)] \leftrightarrow \operatorname{vec}[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot \operatorname{vec}[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss and end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from UCI ML Repository ; ℓ_4 loss



Nadav Cohen (TAU & IMUBIT)

Acceleration by Depth

End-to-end dynamics for LNN:

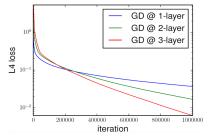
 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $\forall p > 2, \exists$ settings where $\ell(\cdot) = \ell_p$ loss and end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from UCI ML Repository ; ℓ_4 loss



Depth can speed-up GD, even without any gain in expressiveness, and despite introducing non-convexity!

Nadav Cohen (TAU & IMUBIT)

Analyzing DL via Trajectories of GD

AI Week @ TAU, Nov'19

18 / 27

Outline

DOptimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

3 Conclusion

Setting: Matrix Completion

Matrix completion: recover low rank matrix given subset of entries

Generalization

Setting: Matrix Completion

Matrix completion: recover low rank matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	THE WOLF
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

Generalization

Setting: Matrix Completion

Matrix completion: recover low rank matrix given subset of entries

	Avanyans		NOW YOU SEE ME	THE WOLF of WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

min rank(W) s.t. W agrees with observations

Setting: Matrix Completion

Matrix completion: recover low rank matrix given subset of entries

	Avanyan	THEPRESTIGE	NOW YOU SEE ME	THE WOLF of WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

min rank(W) s.t. W agrees with observations

Convex Programming Approach

Replace rank by nuclear norm:

min $||W||_{nuclear}$ s.t. W agrees with observations

Setting: Matrix Completion

Matrix completion: recover low rank matrix given subset of entries

	Avanyan	THEPRESTIGE	NOW YOU SEE ME	THE WOLF of WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

Netflix Prize

min rank(W) s.t. W agrees with observations

Convex Programming Approach

Replace rank by nuclear norm:

min $||W||_{nuclear}$ s.t. W agrees with observations

Perfectly recovers if observations are sufficiently many¹

Nadav Cohen (TAU & IMUBIT)

20 / 27

¹ Cf. Candes & Recht 2008

Deep Learning Approach ("deep matrix factorization")

Deep Learning Approach ("deep matrix factorization")

Parameterize solution as LNN and fit observations using GD

Case Study: Linear Neural Networks Generalization

Linear Neural Network \leftrightarrow "Deep Matrix Factorization"

Deep Learning Approach ("deep matrix factorization")

Parameterize solution as LNN and fit observations using GD

$$4 ? ? 4$$
 $? 5 4 ?$ $? 5 ? ?$ $* \bullet \bullet *$ W_2 $*$ W_1 W_1 hidden dims do
not necessarily
constrain rank

Past Work (Gunasekar et al. 2017)

For depth 2 only:

Deep Learning Approach ("deep matrix factorization")

Parameterize solution as LNN and fit observations using GD

$$4 ? ? 4$$
 $? 5 4 ?$ $? 5 ? ?$ $* • • • *$ W_2 $*$ W_1 W_2 $*$ W_1 W_1

Past Work (Gunasekar et al. 2017)

For depth 2 only:

• Experiments: recovery often accurate (w/o explicit regularization)

Deep Learning Approach ("deep matrix factorization")

Parameterize solution as LNN and fit observations using GD

Past Work (Gunasekar et al. 2017)

For depth 2 only:

- Experiments: recovery often accurate (w/o explicit regularization)
- Conjecture: GD converges to min nuclear norm solution

Deep Learning Approach ("deep matrix factorization")

Parameterize solution as LNN and fit observations using GD

$$4 ? ? 4$$
 $? 5 4 ?$ $? 5 ? ?$ $* • • • *$ W_2 $*$ W_1 W_2 $*$ W_1 W_1

Past Work (Gunasekar et al. 2017)

For depth 2 only:

- Experiments: recovery often accurate (w/o explicit regularization)
- Conjecture: GD converges to min nuclear norm solution
- Theorem: conjecture holds for certain restricted case

Generalization

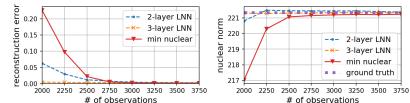
Can the Implicit Regularization Be Captured by Norms?

Case Study: Linear Neural Networks Gen

Generalization

Can the Implicit Regularization Be Captured by Norms?

Experiment



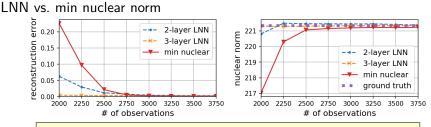
LNN vs. min nuclear norm

Case Study: Linear Neural Networks Gene

Generalization

Can the Implicit Regularization Be Captured by Norms?

Experiment



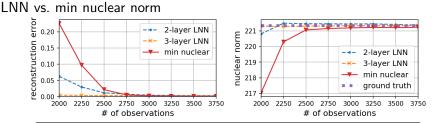
Depth enhanced implicit regularization towards low rank

Case Study: Linear Neural Networks Gene

Generalization

Can the Implicit Regularization Be Captured by Norms?

Experiment



Depth enhanced implicit regularization towards low rank

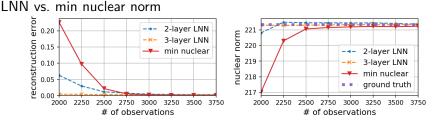
Implicit regularization \neq nuclear norm minimization

Case Study: Linear Neural Networks Gen

Generalization

Can the Implicit Regularization Be Captured by Norms?

Experiment



Depth enhanced implicit regularization towards low rank

Implicit regularization \neq nuclear norm minimization

Theorem

In restricted case where Gunasekar et al. proved depth 2 minimizes nuclear norm, any depth > 2 does so as well

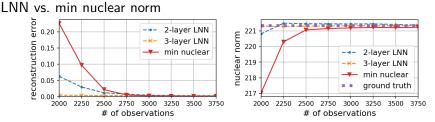
22 / 27

Case Study: Linear Neural Networks Gen

Generalization

Can the Implicit Regularization Be Captured by Norms?

Experiment



Depth enhanced implicit regularization towards low rank

Implicit regularization \neq nuclear norm minimization

Theorem

In restricted case where Gunasekar et al. proved depth 2 minimizes nuclear norm, any depth > 2 does so as well

Capturing implicit regularization via single norm may not be possible

Nadav Cohen (TAU & IMUBIT)

Analyzing DL via Trajectories of GD

Applying Our Trajectory Analysis

Generalization

Applying Our Trajectory Analysis

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

 $\mathsf{vec}[W_{1:N}(t+1)] \leftrightarrow \mathsf{vec}[W_{1:N}(t)] - \eta \cdot \mathsf{P}_{W_{1:N}(t)} \cdot \mathsf{vec}[\nabla \ell(W_{1:N}(t))]$

Case Study: Linear Neural Networks Generalization

Applying Our Trajectory Analysis

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\textit{vec}[\textit{W}_{1:\textit{N}}(t+1)] \leftrightarrow \textit{vec}[\textit{W}_{1:\textit{N}}(t)] - \eta \cdot \textit{P}_{\textit{W}_{1:\textit{N}}(t)} \cdot \textit{vec}[\nabla \ell(\textit{W}_{1:\textit{N}}(t))]$$

Theorem

Let $\{\sigma_r(t)\}_r$ be $W_{1:N}(t)$'s singular vals. Then $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$.

Case Study: Linear Neural Networks

Generalization

Applying Our Trajectory Analysis

Trajectory analysis gave dynamics for end-to-end matrix of *N*-layer LNN:

$$\textit{vec}[\textit{W}_{1:\textit{N}}(t+1)] \leftrightarrow \textit{vec}[\textit{W}_{1:\textit{N}}(t)] - \eta \cdot \textit{P}_{\textit{W}_{1:\textit{N}}(t)} \cdot \textit{vec}[\nabla \ell(\textit{W}_{1:\textit{N}}(t))]$$

Theorem

Let $\{\sigma_r(t)\}_r$ be $W_{1:N}(t)$'s singular vals. Then $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$.

 $\implies \sigma_r(t)$ moves slower when small, faster when large

Case Study: Linear Neural Networks

Generalization

Applying Our Trajectory Analysis

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\textit{vec}[\textit{W}_{1:\textit{N}}(t+1)] \leftarrow \textit{vec}[\textit{W}_{1:\textit{N}}(t)] - \eta \cdot \textit{P}_{\textit{W}_{1:\textit{N}}(t)} \cdot \textit{vec}[\nabla \ell(\textit{W}_{1:\textit{N}}(t))]$$

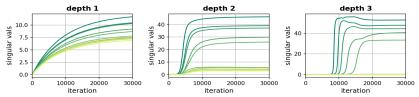
Theorem

Let $\{\sigma_r(t)\}_r$ be $W_{1:N}(t)$'s singular vals. Then $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$.

 $\implies \sigma_r(t)$ moves slower when small, faster when large

Experiment

Evolution of singular vals during GD on LNN



Case Study: Linear Neural Networks Generalization

Applying Our Trajectory Analysis

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$\textit{vec}[\textit{W}_{1:\textit{N}}(t+1)] \leftarrow \textit{vec}[\textit{W}_{1:\textit{N}}(t)] - \eta \cdot \textit{P}_{\textit{W}_{1:\textit{N}}(t)} \cdot \textit{vec}[\nabla \ell(\textit{W}_{1:\textit{N}}(t))]$$

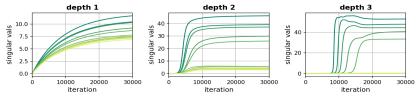
Theorem

Let $\{\sigma_r(t)\}_r$ be $W_{1:N}(t)$'s singular vals. Then $\sigma_r(t)$ evolves $\propto \sigma_r^{2-2/N}(t)$.

 $\implies \sigma_r(t)$ moves slower when small, faster when large

Experiment

Evolution of singular vals during GD on LNN



Depth leads to larger gaps between singular vals (lower rank)!

Nadav Cohen (TAU & IMUBIT)

Analyzing DL via Trajectories of GD

Outline

D Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

Conclusion

Perspective

Understanding optimization and generalization in deep learning:

Perspective

Understanding optimization and generalization in deep learning:

• Language of classical learning theory insufficient

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

• Guarantee of efficient convergence to global min (most general yet)

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

- Guarantee of efficient convergence to global min (most general yet)
- Depth can accelerate convergence (w/o any gain in expressiveness)!

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

- Guarantee of efficient convergence to global min (most general yet)
- Depth can accelerate convergence (w/o any gain in expressiveness)!

Generalization:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

• Depth induces preconditioner promoting movement in directions taken

Optimization:

- Guarantee of efficient convergence to global min (most general yet)
- Depth can accelerate convergence (w/o any gain in expressiveness)!

Generalization:

• **Depth enhances implicit regularization towards low rank**, yielding generalization for problems such as matrix completion

Nadav Cohen (TAU & IMUBIT)

Analyzing DL via Trajectories of GD

D Optimization and Generalization in Deep Learning via Trajectories

2 Case Study: Linear Neural Networks

- Trajectory Analysis
- Optimization
- Generalization

3 Conclusion

Thank You